
CURRENT DEVELOPMENTS I N  ARTIFICIAL 
INTELLIGENCE AND EXPERT SYSTEMS 

by Donald Michie 

Abstract. The definition of an expert system as a knowledge-based 
source of advice and explanation pinpoints the critical problem 
which confronts the would-be builders of such systems. How is the 
required body of knowledge to be elicited from its human posses- 
sors in a form sufficiently complete for effective organization in 
computer memory? This article reviews recent advances in the art 
of automated knowledge-extraction from expert-supplied exam- 
ple decisions. Computer induction, as the new approach is called, 
promises both important parallels to the human capacity for con- 
cept formation and also commercial exploitability. 

The professional activity of the knowledge engineer is to develop 
expert systems. An expert system is a machine system which embodies 
useful human knowledge in machine memory in such a way that it can 
give intelligent advice and also can offer explanations and justifications 
of its decisions on demand. That is the key clause in the customer’s 
specification. A system which gives good decisions but cannot explain 
itself in terms to which the human expert can relate may be a software 
product of great value, but it belongs to some other category: opera- 
tions research, decision support systems, automatic control, and so on. 
So the system must be capable not only of emulating the expert in the 
quality of decisions, but also in the ability to give reasons and justifica- 
tion. From a structural point of view an expert system is a knowledge- 
based inference engine (see fig. 1). 

The inference engine is an interpreter for a high-level language in 
which the knowledge base is expressed. The knowledge base itself is an 
interconnected set of pattern-coded hypotheses, observations, and 
rules. So we find a sharp contrast with classical, sequentially driven 
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programs. The typical setup is a division between a body of situation- 
action rules and what is called the database, which maintains an up- 
dated map of the current state of the problem (see fig. 2). 

EXPERT SYSTEM = KNOWLEDGE-BASE + INFERENCE ENGINE 

Inference engine is the interpreter for a very high-level language 

Knowledge-base is an interconnected set of patterncoded 
observations, hypotheses and +s 

FIG. 1.-Structure of an expert system. 

I DATABASE1 
SITUATION-ACTION 
RULES 

SITUATION: SOMETHING THAT MAY OR MAY NOT BE SATISFIED 
IN THE DATABASE 

SOME PROCESS THAT POSSIBLY CHANGES THE 
DATABASE 

ACTION: 

FIG. P.-Partition of an expert system into “database” and “rulebase.” 

The driver of such a system is not the sequence in which the rules are 
written down, but the matching process whereby a rule is selected. The 
current state-description, or situation, is something that may or may 
not be satisfied in the database. That is to say the left-hand side, the “if” 
part of each given rule, may or may not match with something in the 
database. An action is some process: it may be simply drawing a conclu- 
sion, it may be putting out a message, it may be initiating a robotic 
action. But whatever it is, it is some process that possibly changes the 
database. 

In the simplest case control simply cycles through the rules in the 
rulebase and in each cycle finds which rules have their situation part 
satisfied, uses some criterion of conflict resolution to select one of the 
candidate rules for selection and then performs the action part of that 
rule. T h e  action may have the form of offering advice or may even be 
asking a question. If the user responds by querying the selected action, 
then the system will explain it, for example, somewhat trivially but 
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quite effectively by displaying the sequence of rules which generated its 
behavior. Figure 3 illustrates the recognize-act cycle. 

EACH CYCLE THE INFERENCE ENGINE 

* FINDS WHICH RULES HAVE THEIR SITUATION PART SATISFIED 
IN THE 'DATABASE' 

* SELECTS ONE OF THEM TO BE 'FIRED' 

* PERFORMS THE ACTION PART OF THE SELECTED RULE 
(THUS POSSIBLY CHANGING THE DATABASE) 

THE "ACTION" MAY HAVE THE FORM OF OFFERING 
ADVICE OR ASKING A QUESTION 

IF THE USER RESPONDS BY QUERYING THE ACTION 
THE SYSTEM MAY "EXPLAIN" IT  BY DISPLAYING 
THE SEQUENCE OF RULES WHICH TRIGGERED IT. 

FIG. 3.-The recognize-act cycle of an expert system. 

The tradition of knowledge engineering as it has evolved in the 
United States has been based on a scenario in which the knowledge 
engineer, the computer scientist who specializes in doing this kind of 
work, labors hand in hand with a domain specialist whose knowledge it 
is desired to transfer. The engineer seeks to draw the required exper- 
tise out of the expert's head in the form of rules which can be encoded 
in the machine system. The so-called dialogue acquisition method is 
depicted in figure 4 as an old-style knowledge engineer's route map. 

Machine 
SHOW-HOW 

Machine 
KNOW-HOW 

I 
Human 1 KNOW-HOW 

iMMlNG & 

//ARTICULATION 

The'Fsipenb,aum 
bottleneck 

FIG. 4.-Knowledge engineer's route map: old style. 
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The knowledge engineer’s object is to convert human know-how into 
“say-how” through a process of articulation of which the expert is 
supposed to be capable. Once in this form, the traditional arts of 
programming and compiling can convert it into machine code. This 
code is the machine representation of the know-how. At run time it 
generates what I have called machine show-how, in other words the 
expert behavior that the customer desires. 

This seemed a promising way to go because experts in various 
domains, such as chemistry, troubleshooting complex equipment, or 
medical diagnosis, are surprisingly confident about their ability to 
access the large body of pattern based rules which they have in their 
heads. It seemed a reasonable idea to take this confidence at its face 
value. However, time has moved on, and this craft has been in existence 
for nearly ten years since the original laboratory demonstrations. Yet 
the number of systems which are out in the marketplace actually 
earning money could, I think, be counted on the fingers of two hands. 
There must be a reason for this. 

Edward Feigenbaum has put his finger on the trouble. Note the 
channel in figure 4 which I have drawn as rather narrow. He called it 
“the bottleneck problem of applied artificial intelligence” (Feigenbaum 
1977). If the narrowness of that channel is independent of the complex- 
ity of the task domain, then the situation is one which the technology 
could live with. We would have a hard time, and we would always have a 
hard time pushing or pulling expertise through the narrow channel, 
but it could at least be done. In the last few years at Edinburgh my 
laboratory thought it worthwhile to make an investigation to see if this 
hypothesis of independence is valid. There is an alternative possibility, 
namely, that the more complex the mental skill, the greater the propor- 
tion of it which is encoded in intuitive form and hence beyond access by 
anybody including the expert. The results of our quite extensive tests 
have been conclusive. Expert articulacy is not independent of complex- 
ity. One reaches the dark area of inaccessibility surprisingly soon as one 
moves up the complexity scale. 

So two alternatives present themselves. The first is that the knowl- 
edge engineering enterprise seemed like a good idea at the time, but 
has now reached the end of its useful life. The alternative possibility is 
that this route map is incomplete and that there is some way of going 
from human know-how to machine know-how other than by the 
method of articulation. 

The first indication that the latter might be the case comes from the 
elementary observation that when an expert is asked to perform a 
know-how transplant into a human apprentice rather than into 
machine memory, he does not in general proceed by articulating the 



Donald Michie 379 

precepts and rules of his craft. Most of the work is done by presenting a 
cleverly graded and sequenced series of tutorial examples. 

It thus appears there is another way of moving this conceptualized 
material into another agent provided that that agent is in a suitably 
prepared state. In the human case the agent is the apprentice. By 
“suitably prepared” we mean that the agent should be capable of 
learning by example. 

This blocked channel can thus be circumvented ifand only if a means 
can be found for moving the rules from the expert’s head to machine 
memory via the language of examples rather than via the language of 
explicit articulation. For that we require effective algorithms for induc- 
tive inference to be executed by the recipient machine. Such algorithms 
must simulate the apprentice’s ability to reconstruct from the tutorial 
examples a mental model of the master’s know-how. 

Machine I 1 SHOW-HOW 3 f  EXECUTION 

FIG. 5.-Map of overall problem. 

Figure 5 depicts a map of the overall problem somewhat richer than 
the old-style map shown earlier. In this case we  propose that it is 
possible to proceed from human show-how, that is, human-supplied 
examples. We know that the human can change his know-how into 
tutorial show-how. We know this because an expert is usually hired by 
the employer for two things, notjust one. One task is to employ skills on 
actual cases: the second task is to transmit skills to new recruits. Given 
that, then by computer induction we can have the machine acquire 
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expert skills from tutorial examples of expert decisions presented to it. 
A model of the expert’s skill in explicit form can then be displayed on 
the screen as rules. Those can be compiled into machine know-how. If 
this can all be done then we have a “northwest passage” to circumvent 
the bottleneck. Thanks to the fact that there are now some quite 
efficient inductive inference algorithms available it has been possible to 
engineer tool-kits for building expert systems from expert-supplied 
examples. In our own laboratory we do not now do things any other 
way. 

\ 

\ 
\ 
\ 

FIG. 6.-Knowledge engineer’s route map: new style. 

I do not want to suggest that we should make no use at all of expert 
articulation. There is no matter of principle about it. Rather, the 
question is where the main traffic should pass. What is involved is a 
cyclic trial and error process. The small refinement cycle in figure 6 
depicts how the expert with the help of the computer scientist gener- 
ates tutorial examples so that incrementally the machine can display 
successively refined rules on the screen; the expert then has the free- 
dom to say whether she likes the rules. A vital criterion is, does she 
understand them? Do they make sense from her point of view? Second, 
can she mentally check them? If she can do both, she tends to be 
satisfied. If she is not satisfied, then she can use the rule editor directly 
and edit the rules. More often the domain specialist will go around the 
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cycle and generate new examples in order to refine or correct by 
induction those parts of the rulebase that she does not like. This design 
process is essentially iterative. Finally the rulebase is perceived as good 
enough to install in the field. 

Inevitably there is a second refinement cycle occasioned by run-time 
“bugs” or errors, not low-level bugs of the kind with which pro- 
grammers are mostly familiar, but more conceptual bugs. Customer 
complaints get reported back to the development laboratory. In due 
course the knowledge engineer has to sit down with his own domain 
specialist, or borrow one from the customer, and get these bugs out. 

All this depends on there being good, economically adequate induc- 
tion algorithms. There is quite a rich history of inductive inference 
work in artificial intelligence. One of the most active centers has for a 
long time been Ryszard Michalski’s group at the University of Illinois. I 
shall not dwell on his work, interesting though it is. Whether or not the 
Michalski algorithms, which are academically motivated, could be 
made into cost-effective software tools is an open question. On the 
other hand, even earlier than Michalski’s work, studies were reported 
in the 1960s which were overlooked by the artificial intelligence com- 
munity and by the computer science community at large. This was 
work by Earl Hunt (1966). The algorithm is simple and was possibly 
neglected because Hunt is by profession a psychologist. So the work 
was published in the wrong subculture. 

In 1978 I was teaching a graduate course in artificial intelligence at 
Stanford University. A distinguished visiting professor, Ross Quinlan, 
from Sydney decided to try the programming exercise which I had 
given to the class. The task was to use an induction algorithm to solve a 
certificated hard problem which I had brought from Edinburgh. The 
problem was hard in the sense that as far as we could tell, it was too 
complex to be programmable by conventional means, and therefore 
needed something special. As a doctoral student in the 1960s in Sydney, 
Quinlan had assisted Hunt. At the end of term, he had a program 
running in the programming language, Lisp, which solved the hard 
problem. Back in Sydney he recoded it in another programming lan- 
guage, Pascal, and proceeded to do a sequence of extremely interesting 
experiments (see Quinlan 1983). 

Quinlan’s own considerable extension of Hunt’s algorithm is called 
ID3 and is the basis of all commercially viable induction systems at the 
present time. It is given a training set of positive and negative instances, 
where each instance is represented as a fixed list of attributes or 
properties. Attributes can have either truth values or numerical values. 
It is required to produce a decision tree for differentiating positive and 
negative instances. Since a decision tree is logically equivalent to a 
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conditional expression in a programming language, you can say that 
the output of the algorithm is a program. The synthesized expert 
program can then be run on new material, to test the level of skill 
induced by the particular examples used as the training set. 

My Edinburgh laboratory subsequently developed an enhancement 
of ID3 to include the ability to handle numerical as well as logical 
attributes of the problem domain. A commercial version of this, 
Expert-Ease, is available on the IBM Personal Computer. Expert sys- 
tems already developed with this approach include Dow-Jones fore- 
casting, error-message interpretation in UCSD Pascal, classification of 
lymphatic cancers, developing rules for high school algebra and many 
others. 

So far the source of the tutorial examples has been presented as 
being the human expert in interaction with the system, like a teacher 
with an apprentice. However, that was not the picture that Quinlan had 
in mind when he developed ID3. This point is brought out in figure 7. 
To apply ID3 or any other algorithm which generates rules from 
examples, that is, any algorithm for computer induction, a sufficient 
set of primitive attributes must have been identified. At present we do 
not know of any source other than the domain specialist that can say 
what primitives one ought to measure. However poorly developed the 
expert’s powers of articulation of entire rules may be, she has no 
trouble in knowing what low-level measurements are relevant, al- 
though she commonly attributes relevance to additional measurements 
which later may be shown to be redundant. 

Given : a collection of positive and 
negative instances, where each 
instance is the description of an 
object in terms of a fixed set of 
attributes or properties 

Produces: a decision tree for differentiating 
positive and negative instances 

FIG. 7.-The ID3 algorithm was conceived for operating on pre-existing collections of 
positive and negative instances of a concept. 

This does not matter from the knowledge engineer’s point of view. 
The induction algorithm simply leaves those attributes on one side and 
fails to incorporate them in the final rule. The expert may or may not 
then argue that it ought to have incorporated them. I am not implying 
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that the dummy attributes are not performing some important task in 
the cognitive economy of the expert. I suspect that they may be, just as 
various superstitious beliefs play a useful role in many highly de- 
veloped skills includingeven in athletics. But logically from the point of 
view of incorporation into the final rulebase, they appear to be redun- 
dant. 

A further requirement is an oracle, a source of expert decisions for 
the system to work from. The oracle can be one of a number of things. 
It can be a human oracle, that is, an expert, or it can be a precomputed 
database. 

There is a well-known algorithm in two-person finite games with 
perfect information, which makes it possible to take some nontrivial 
endgame of only a few million legal positions in which chess masters 
flounder, and by exhaustive backwards computation develop a 
database, a lookup table, of positions paired with their game-theoretic 
values. By expending a great amount of computational labor, we end 
up with an oracle which is rather expensive to store. One application of 
computer induction is to take such giant lookup tables and squeeze 
them down into compact explanatory, descriptive, and predictive rules. 

Another kind of oracle may be the external world. I will give two 
examples. One is the task of predicting what the Dow-Jones index is 
going to do in the next fourteen days. This was a student project at the 
University of Illinois and the student, Helmut Braun, selected it him- 
self. He also located a professional group willing to act as certifiers of 
the quality of performance of the final system. In a graduate class we do 
not want expert systems which are only as good as human experts. That 
is for undergraduate students. In its run-time behavior it is reasonable 
to demand of properly engineered knowledge bases that they do a little 
better. The only way to find out in a given case is by getting authentic 
experts to spend some of their time validating student exercises. Braun 
found a company in Indianapolis that makes its money by publishing 
regular forecasts of the Dow-Jones index. Their success is based on the 
expert skill of the founder of the company. 

There were thus two possible oracles that the student could use. He 
could use the skilled forecaster himself, since he had available an 
archival file of the last few years of his expert decisions. Or he could 
take what would in general be expected to give a higher live1 of per- 
formance in the induced product, namely, what actually happened, not 
what the expert predicted. Did the index actually go up, or was it 
roughly stationary, or did it go down? Braun did it both ways and he got 
an “A” for that project. He also aroused interest in the accountancy 
department of the University, and the work is now being extended. 

My other example of taking events in the real world as an oracle, that is, 
as a source of preclassified instances, is from the realm of control. We 
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tackled a task of this kind many years ago with extremely rudimentary 
induction methods compared with the present day. The task was that 
of balancing a pole on a motor driven cart that goes back and forth on a 
track. It must not drop the pole, and it also must not run off either end 
of the track-not a trivial task. An even more complex task would be 
riding a bicycle. If one received a contract to develop a robot bicyclist, 
the first task, as always, would be to work out a good set of mea- 
surements to take and a frequency of sampling. The human is not able 
to sample more than perhaps ten times per second. But the important 
thing is that the only sample of expert decisions is that obtained by 
monitoring the real-time behavior of a human bicyclist who is already 
able to perform this skill. This is what is meant by a real-world oracle. 

Can an expert system be generated exclusively from examples? It has 
been done convincingly more than once, the first by R. Chilausky, 
B. Jacobsen, and Michalski in the middle 1970s in the case of diagnos- 
ing soybean diseases (see Michalski & Chilausky 1980a; 1980b). This is a 
crop of considerable commercial interest to the state of Illinois. They 
chose nineteen common diseases suggested by plant pathologist col- 
leagues. These formed the attributes, some yes-no, some with result 
sets containing as many as seven different values (see fig. 8). 

A 0 I1 in PLI 12OK bytes of program space 

SOY-BEAN DATA: 19 diseases 

35 descriptors (domain sizes 2-7) 

307 cases (descriptor sets with 
confirmed diagnoses) 

Test set: 376 new cases 

>=% accurate diagnosis with 
machine rules 

83% accuracy with Jacobsen's rules 
different origins 

machine runs 
using rules of 

93% accuracy with interactively 
- improved rule 

FIG. %-Expert system generated exclusively from examples compared with hand- 
crafted variants (from Chilausky, Jacobsen, and Michalski 1976). 

Their training set comprised 307 cases, each presented as a list of 
35 values paired with the name of the disease. They did the job both 
ways, that is, using dialogue acquisition and using inductive acquisition. 
They worked with Barry Jacobsen, a plant pathologist who specialized 
in soybean diseases and who was already well known for a taxonomy 
that he had developed himself. They got a rulebase by dialogue acquisi- 
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tion which, when tested on 376 new cases, gave 83 percent accuracy. 
This would have been encouraging were it not for the fact that by 
merely inducing rules from the data the machine obtained a rulebase 
of more than 99 percent accuracy. Only one plant out of the 376 was 
misclassified when the rule was tested on new material. 

When Jacobsen saw that, he worked hard in dialogue acquisition 
mode using the computer facilities available, to see if he could improve 
his rules. He got it finally to 93 percent accuracy. He then decided to 
accept the machine-generated rules in place of his own as reference 
material, and this he uses to the present day. It is a significant early 
event-an example of a phenomenon that we will see more commonly. 
The useful products to be obtained from knowledge engineering have 
in the past been conceived entirely in terms of the run-time behavior of 
the program. But if the rulebase itself can be structured and con- 
strained in such a way as to remain intelligible and professionally 
useable by the experts, then there is a product of a different kind, 
namely, new and improved codifications (see Shapiro 8c Michie [in 
press]). These have an independent value apart from whether they run 
on the machine. Such codifications are positive contributions in them- 
selves and are indeed welcomed by the experts as new reference mate- 
rial. 

Let us now consider Quinlan’s induction system, ID3. We start off 
with a collection of instances which are already classified and then we 
proceed as in figure 9 (see Quinlan 1983). Having developed a rule, the 
algorithm uses it to classify new material sampled from the database. 
Each example for which the rule gives the right answer, the algorithm 
throws away. But whenever it finds a refutation example, it saves it, 
because that has “tutorial” value for creating a better rule. When the 
refutation file has grown to a preset limit then a new file of exceptions is 
merged with the old working set to form a new working set. The entire 
rule is then thrown away-rather shocking to many people because we 
humans do not work that way. We are conservative about our theories, 
and we try to hang on to them and patch them when we get refutations. 
But the economics of ID3 are such that it does better to forget the old 
rule, work instead on the augmented example set, and induce a new 
rule from scratch. In a really hard case it may go around the iteration 
loop 19 or 20 times, in the style shown in figure 9, until it has tested the 
current version of the rule on a sufficiently large number of new cases 
without finding a refutation-“sufficiently large” being a user-defined 
parameter. Then it terminates. Unless the resultingrule is tested on the 
entire universe of cases, there can be no guarantee that the rule ob- 
tained will be 100 percent correct. Quinlan’s paper gives a technical 
discussion of that point, with some rather surprising and encouraging 
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results concerning bounded error (Quinlan 1983). The main result 
seems counter-intuitive: on the assumptions that Quinlan made in 
order to do the theory, accuracy of the rule is only a function of the size 
of the training set and is independent of the size of the universe. 
Second, one finds oneself also surprised at how accurate a rule can be 
obtained from how small a number of examples. Quinlan also reports 
systematic empirical tests. All of the results fall well within the bounds 
predicted by his theory. 

ID3 was designed to work with large numbers 
of instances. It starts by selecting a small 
subset of them (the working set) and at each 
cycle 

1. Forms a decision tree that is correct for 
the current working set 

Finds the exceptions to this decision tree 
among the other instances 

Constructs a new working set from the current 
window and the exceptions 

2. 

3. 

FIG. 9.-Iterative refinement by ID3 of a classification rule in the form of a decision 
tree (see Quinlan 1983). 

Quinlan also reports an extension of the original problem that I gave 
to the Stanford class. The original problem was from the chess end- 
game king-and-rook against king-and-knight. Is the knight side lost 
in two ply? In other words, is the position such that whatever the knight 
does, the rook side can either capture the knight or checkmate on the 
next move? This can be recognized more or less at a glance, certainly in 
a few seconds by a master. But if the object is to write a pattern-based 
program which can do fast “at-a-glance” recognition, it is an adverse 
programming problem. Quinlan then tackled the next level of com- 
plexity, knight lost in three ply. The rook side must spot whether there 
exists a move such that whatever the knight does, then the rook side 
kills him on the next move, either by capture or by checkmate. In terms 
of cognitive complexity, it is a substantial jump. Chess masters can take 
up to half a minute or so to classify such a position and in our experi- 
ence just occasionally get it wrong. It is totally out of the question to 
build an expert system for this task in conventional style other than 
by reckless use of skilled manpower. Having elaborated a set of 49 prim- 
itive attributes, Quinlan generated a decision tree inductively using a 
training set of 715 instances. The decision tree had 177 nodes, that is, 
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84 tests in the corresponding conditional expression. It was fairly 
cheap to manufacture, requiring only 34 seconds on the Cyber 172 
computer-leaning, it must be said, on much of the above-described 
human work as regards selection of primitive attributes. By contrast, 
the best expert system of the pattern-driven search variety that Quin- 
lan could develop, using himself as both expert and knowledge en- 
gineer in internal dialogue, took him months of work. That is not a 
reasonable use of human resources to manufacture a program, when 
an equally accurate program can be manufactured in 34 seconds on a 
Cyber 172. But the denouement was even more striking. The run-time 
performance of the machine-made decision program was five times 
faster than the best specialized search program that Quinlan could 
code. 

On the face of it, that looks like a very useful breakthrough for the 
software technology industry. A semiautomatic process can apparently 
generate programs which are actually five times more efficient than the 
best that programmers can code. There is no question that such pro- 
grams and such ways of making programs will filter into software 
practice as soon as the industry becomes aware that these straightfor- 
ward but powerful tools exist. However, there are grounds for unease. 
Quinlan’s decision-tree program, although it ran fast and accurately on 
the machine, when shown to the chess master was completely opaque. 
It was not a question of a few glimmers of sense here and there 
scattered through a large obscure structure, but just a total blackout. 
We have repeatedly confirmed the phenomenon with other chess 
material in Edinburgh (Shapiro & Niblett 1982), and industrial as- 
sociates have encountered it in, for example, circuit-board fault find- 
ing and process control. If this method of manufacturing useful bits of 
software has a very attractive feature, commercially attractive, does it 
matter if such artificially generated materials are opaque? In some 
applications it does not matter and a black box can be tolerated. But in 
the very complex decision-making areas where there is the greatest 
market pull, problems like control software for nuclear power stations, 
or, shall we say, the United States NORAD nuclear warning system, 
matters stand differently. 

There are numerous areas where control software is already more 
opaque than is safe. We recently did a two-year study for the European 
Economic Community. What we found concerning opacity in hand- 
programmed systems was worrying enough. But a source of rather 
cheap automatically generated code which is intrinsically doomed to 
add to that opacity must be regarded as even more worrying. 

For the user who needs transparency in the generated code, over 
very large and complex domains, a facility must be incorporated in the 
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induction package for the well-known strategy of “divide and conquer” 
common both to artificial intelligence and to the structured program- 
ming school. I am referring to the decomposition of a large problem 
into subproblems, sub-subproblems, and so on, thus forming a proce- 
dural hierarchy. This facility is not explicitly provided in Quinlan’s 
algorithm. However, it is under development as a central feature of an 
inductively oriented expert systems language designed by Stephen 
Muggleton (1985) in Edinburgh. A version is available under the com- 
mercial name RuleMaster.’ Preliminary results of its application to 
meteorological forecasting and to other problems are summarized 
below. 

WILLARD is an expert system which forecasts the likelihood of 
severe thunderstorms occurring in the central United States. Examina- 
tion and interpretation of critical meteorological parameters (such as 
temperature, moisture, winds, and pressure) by an experienced severe 
thunderstorm forecaster yields ciues on the temporal and spatial do- 
main of severe thunderstorms. The WILLARD expert system consists 
of a hierarchy of thirty modules, each of which contains a single 
decision rule. This hierarchy is on average four levels deep. All mod- 
ules’ rules were developed using inductive generalization (although 
RuleMaster allows expert authored rules). About 140 examples out of a 
possible nine million situations were used in building WILLARD. It 
can operate in interactive or batch forecast mode and gives a full 
explanation of reasoning on demand. WILLARD has been found to 
compare favorably with the United States National Severe Storm Fore- 
cast Center over a number of test cases. 

EARL is an expert system for diagnosing faults in large distribution 
transformers. The repair or replacement costs of these large transform- 
ers range from $150,000 to $1,500,000. A human expert has in the 
past been employed in interpreting measurements of the amounts of 
different gases dissolved in the cooling fluid of these transformers; the 
relative quantities of these gases gives strong indications of possible 
problems in the transformer. This expert system has been installed and 
is being used by the Hartford Steam Boiler Insurance company. A 
recent comparison showed that the expert system made the same 
diagnosis as the expert it was based on in all 30 different test cases. 

ARCH is a procedural expert system, built inductively, to carry out 
robot plans in a blocks world. The problem involved many of the facets 
of procedural expert systems, such as design and scheduling. ARCH, 
like the more diagnostic expert systems (WILLARD and EARL), gives, 
on demand, a full explanation of all decisions and actions made. 

In  conclusion, there is no compulsion for an information 
technologist to be interested in this new field, but when other methods 
fail there may be something of advantage here. 
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NOTE 

1. RuleMaster is available through Intelligent Terminals Ltd. of Scotland and Radian 
Corporation, Austin, Texas. For an account of the design features, including back 
chaining and forward chaining and a finite state formalism conducive to control applica- 
tions, see Michie, Muggleton, Riese, and Zubrick (1984). 
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