
CURRENT DEVELOPMENTS I N ARTIFICIAL
INTELLIGENCE AND EXPERT SYSTEMS

by Donald Michie

Abstract. The definition of an expert system as a knowledge-based
source of advice and explanation pinpoints the critical problem
which confronts the would-be builders of such systems. How is the
required body of knowledge to be elicited from its human posses-
sors in a form sufficiently complete for effective organization in
computer memory? This article reviews recent advances in the art
of automated knowledge-extraction from expert-supplied exam-
ple decisions. Computer induction, as the new approach is called,
promises both important parallels to the human capacity for con-
cept formation and also commercial exploitability.

The professional activity of the knowledge engineer is to develop
expert systems. An expert system is a machine system which embodies
useful human knowledge in machine memory in such a way that it can
give intelligent advice and also can offer explanations and justifications
of its decisions on demand. That is the key clause in the customer’s
specification. A system which gives good decisions but cannot explain
itself in terms to which the human expert can relate may be a software
product of great value, but it belongs to some other category: opera-
tions research, decision support systems, automatic control, and so on.
So the system must be capable not only of emulating the expert in the
quality of decisions, but also in the ability to give reasons and justifica-
tion. From a structural point of view an expert system is a knowledge-
based inference engine (see fig. 1).

The inference engine is an interpreter for a high-level language in
which the knowledge base is expressed. The knowledge base itself is an
interconnected set of pattern-coded hypotheses, observations, and
rules. So we find a sharp contrast with classical, sequentially driven

Donald Michie is Director of Research and Advanced Study, The Turing Institute,
36 North Hanover Street, Glasgow G1 ZAD, Scotland and professoremeritusof machine
intelligence, University of Edinburgh. He presented this paper at the annual conference
(“From Artificial Intelligence to Human Consciousness”) of the Science and Religion
Forum, Canterbury, England, in April 1984. This article is reprinted here, by permis-
sion, from the Internatzonal Handbook $Information Technology and AutomatedOffie Systems
(first edition, 1985). 0 Elsevier Science Publishers B.V. (North-Holland).

[Zygon, vol. 20, no. 4 (December 1985).] ISSN 0044-5614

375

376 ZYGON

programs. The typical setup is a division between a body of situation-
action rules and what is called the database, which maintains an up-
dated map of the current state of the problem (see fig. 2).

EXPERT SYSTEM = KNOWLEDGE-BASE + INFERENCE ENGINE

Inference engine is the interpreter for a very high-level language

Knowledge-base is an interconnected set of patterncoded
observations, hypotheses and +s

FIG. 1.-Structure of an expert system.

I DATABASE1
SITUATION-ACTION
RULES

SITUATION: SOMETHING THAT MAY OR MAY NOT BE SATISFIED
IN THE DATABASE

SOME PROCESS THAT POSSIBLY CHANGES THE
DATABASE

ACTION:

FIG. P.-Partition of an expert system into “database” and “rulebase.”

The driver of such a system is not the sequence in which the rules are
written down, but the matching process whereby a rule is selected. The
current state-description, or situation, is something that may or may
not be satisfied in the database. That is to say the left-hand side, the “if”
part of each given rule, may or may not match with something in the
database. An action is some process: it may be simply drawing a conclu-
sion, it may be putting out a message, it may be initiating a robotic
action. But whatever it is, it is some process that possibly changes the
database.

In the simplest case control simply cycles through the rules in the
rulebase and in each cycle finds which rules have their situation part
satisfied, uses some criterion of conflict resolution to select one of the
candidate rules for selection and then performs the action part of that
rule. T h e action may have the form of offering advice or may even be
asking a question. If the user responds by querying the selected action,
then the system will explain it, for example, somewhat trivially but

Donald Michie 377

quite effectively by displaying the sequence of rules which generated its
behavior. Figure 3 illustrates the recognize-act cycle.

EACH CYCLE THE INFERENCE ENGINE

* FINDS WHICH RULES HAVE THEIR SITUATION PART SATISFIED
IN THE 'DATABASE'

* SELECTS ONE OF THEM TO BE 'FIRED'

* PERFORMS THE ACTION PART OF THE SELECTED RULE
(THUS POSSIBLY CHANGING THE DATABASE)

THE "ACTION" MAY HAVE THE FORM OF OFFERING
ADVICE OR ASKING A QUESTION

IF THE USER RESPONDS BY QUERYING THE ACTION
THE SYSTEM MAY "EXPLAIN" IT BY DISPLAYING
THE SEQUENCE OF RULES WHICH TRIGGERED IT.

FIG. 3.-The recognize-act cycle of an expert system.

The tradition of knowledge engineering as it has evolved in the
United States has been based on a scenario in which the knowledge
engineer, the computer scientist who specializes in doing this kind of
work, labors hand in hand with a domain specialist whose knowledge it
is desired to transfer. The engineer seeks to draw the required exper-
tise out of the expert's head in the form of rules which can be encoded
in the machine system. The so-called dialogue acquisition method is
depicted in figure 4 as an old-style knowledge engineer's route map.

Machine
SHOW-HOW

Machine
KNOW-HOW

I
Human 1 KNOW-HOW

iMMlNG &

//ARTICULATION

The'Fsipenb,aum
bottleneck

FIG. 4.-Knowledge engineer's route map: old style.

378 ZYGON

The knowledge engineer’s object is to convert human know-how into
“say-how” through a process of articulation of which the expert is
supposed to be capable. Once in this form, the traditional arts of
programming and compiling can convert it into machine code. This
code is the machine representation of the know-how. At run time it
generates what I have called machine show-how, in other words the
expert behavior that the customer desires.

This seemed a promising way to go because experts in various
domains, such as chemistry, troubleshooting complex equipment, or
medical diagnosis, are surprisingly confident about their ability to
access the large body of pattern based rules which they have in their
heads. It seemed a reasonable idea to take this confidence at its face
value. However, time has moved on, and this craft has been in existence
for nearly ten years since the original laboratory demonstrations. Yet
the number of systems which are out in the marketplace actually
earning money could, I think, be counted on the fingers of two hands.
There must be a reason for this.

Edward Feigenbaum has put his finger on the trouble. Note the
channel in figure 4 which I have drawn as rather narrow. He called it
“the bottleneck problem of applied artificial intelligence” (Feigenbaum
1977). If the narrowness of that channel is independent of the complex-
ity of the task domain, then the situation is one which the technology
could live with. We would have a hard time, and we would always have a
hard time pushing or pulling expertise through the narrow channel,
but it could at least be done. In the last few years at Edinburgh my
laboratory thought it worthwhile to make an investigation to see if this
hypothesis of independence is valid. There is an alternative possibility,
namely, that the more complex the mental skill, the greater the propor-
tion of it which is encoded in intuitive form and hence beyond access by
anybody including the expert. The results of our quite extensive tests
have been conclusive. Expert articulacy is not independent of complex-
ity. One reaches the dark area of inaccessibility surprisingly soon as one
moves up the complexity scale.

So two alternatives present themselves. The first is that the knowl-
edge engineering enterprise seemed like a good idea at the time, but
has now reached the end of its useful life. The alternative possibility is
that this route map is incomplete and that there is some way of going
from human know-how to machine know-how other than by the
method of articulation.

The first indication that the latter might be the case comes from the
elementary observation that when an expert is asked to perform a
know-how transplant into a human apprentice rather than into
machine memory, he does not in general proceed by articulating the

Donald Michie 379

precepts and rules of his craft. Most of the work is done by presenting a
cleverly graded and sequenced series of tutorial examples.

It thus appears there is another way of moving this conceptualized
material into another agent provided that that agent is in a suitably
prepared state. In the human case the agent is the apprentice. By
“suitably prepared” we mean that the agent should be capable of
learning by example.

This blocked channel can thus be circumvented ifand only if a means
can be found for moving the rules from the expert’s head to machine
memory via the language of examples rather than via the language of
explicit articulation. For that we require effective algorithms for induc-
tive inference to be executed by the recipient machine. Such algorithms
must simulate the apprentice’s ability to reconstruct from the tutorial
examples a mental model of the master’s know-how.

Machine I 1 SHOW-HOW 3 f EXECUTION

FIG. 5.-Map of overall problem.

Figure 5 depicts a map of the overall problem somewhat richer than
the old-style map shown earlier. In this case we propose that it is
possible to proceed from human show-how, that is, human-supplied
examples. We know that the human can change his know-how into
tutorial show-how. We know this because an expert is usually hired by
the employer for two things, notjust one. One task is to employ skills on
actual cases: the second task is to transmit skills to new recruits. Given
that, then by computer induction we can have the machine acquire

380 ZYGON

expert skills from tutorial examples of expert decisions presented to it.
A model of the expert’s skill in explicit form can then be displayed on
the screen as rules. Those can be compiled into machine know-how. If
this can all be done then we have a “northwest passage” to circumvent
the bottleneck. Thanks to the fact that there are now some quite
efficient inductive inference algorithms available it has been possible to
engineer tool-kits for building expert systems from expert-supplied
examples. In our own laboratory we do not now do things any other
way.

\

\
\
\

FIG. 6.-Knowledge engineer’s route map: new style.

I do not want to suggest that we should make no use at all of expert
articulation. There is no matter of principle about it. Rather, the
question is where the main traffic should pass. What is involved is a
cyclic trial and error process. The small refinement cycle in figure 6
depicts how the expert with the help of the computer scientist gener-
ates tutorial examples so that incrementally the machine can display
successively refined rules on the screen; the expert then has the free-
dom to say whether she likes the rules. A vital criterion is, does she
understand them? Do they make sense from her point of view? Second,
can she mentally check them? If she can do both, she tends to be
satisfied. If she is not satisfied, then she can use the rule editor directly
and edit the rules. More often the domain specialist will go around the

Donald Michie 381

cycle and generate new examples in order to refine or correct by
induction those parts of the rulebase that she does not like. This design
process is essentially iterative. Finally the rulebase is perceived as good
enough to install in the field.

Inevitably there is a second refinement cycle occasioned by run-time
“bugs” or errors, not low-level bugs of the kind with which pro-
grammers are mostly familiar, but more conceptual bugs. Customer
complaints get reported back to the development laboratory. In due
course the knowledge engineer has to sit down with his own domain
specialist, or borrow one from the customer, and get these bugs out.

All this depends on there being good, economically adequate induc-
tion algorithms. There is quite a rich history of inductive inference
work in artificial intelligence. One of the most active centers has for a
long time been Ryszard Michalski’s group at the University of Illinois. I
shall not dwell on his work, interesting though it is. Whether or not the
Michalski algorithms, which are academically motivated, could be
made into cost-effective software tools is an open question. On the
other hand, even earlier than Michalski’s work, studies were reported
in the 1960s which were overlooked by the artificial intelligence com-
munity and by the computer science community at large. This was
work by Earl Hunt (1966). The algorithm is simple and was possibly
neglected because Hunt is by profession a psychologist. So the work
was published in the wrong subculture.

In 1978 I was teaching a graduate course in artificial intelligence at
Stanford University. A distinguished visiting professor, Ross Quinlan,
from Sydney decided to try the programming exercise which I had
given to the class. The task was to use an induction algorithm to solve a
certificated hard problem which I had brought from Edinburgh. The
problem was hard in the sense that as far as we could tell, it was too
complex to be programmable by conventional means, and therefore
needed something special. As a doctoral student in the 1960s in Sydney,
Quinlan had assisted Hunt. At the end of term, he had a program
running in the programming language, Lisp, which solved the hard
problem. Back in Sydney he recoded it in another programming lan-
guage, Pascal, and proceeded to do a sequence of extremely interesting
experiments (see Quinlan 1983).

Quinlan’s own considerable extension of Hunt’s algorithm is called
ID3 and is the basis of all commercially viable induction systems at the
present time. It is given a training set of positive and negative instances,
where each instance is represented as a fixed list of attributes or
properties. Attributes can have either truth values or numerical values.
It is required to produce a decision tree for differentiating positive and
negative instances. Since a decision tree is logically equivalent to a

382 ZYGON

conditional expression in a programming language, you can say that
the output of the algorithm is a program. The synthesized expert
program can then be run on new material, to test the level of skill
induced by the particular examples used as the training set.

My Edinburgh laboratory subsequently developed an enhancement
of ID3 to include the ability to handle numerical as well as logical
attributes of the problem domain. A commercial version of this,
Expert-Ease, is available on the IBM Personal Computer. Expert sys-
tems already developed with this approach include Dow-Jones fore-
casting, error-message interpretation in UCSD Pascal, classification of
lymphatic cancers, developing rules for high school algebra and many
others.

So far the source of the tutorial examples has been presented as
being the human expert in interaction with the system, like a teacher
with an apprentice. However, that was not the picture that Quinlan had
in mind when he developed ID3. This point is brought out in figure 7.
To apply ID3 or any other algorithm which generates rules from
examples, that is, any algorithm for computer induction, a sufficient
set of primitive attributes must have been identified. At present we do
not know of any source other than the domain specialist that can say
what primitives one ought to measure. However poorly developed the
expert’s powers of articulation of entire rules may be, she has no
trouble in knowing what low-level measurements are relevant, al-
though she commonly attributes relevance to additional measurements
which later may be shown to be redundant.

Given : a collection of positive and
negative instances, where each
instance is the description of an
object in terms of a fixed set of
attributes or properties

Produces: a decision tree for differentiating
positive and negative instances

FIG. 7.-The ID3 algorithm was conceived for operating on pre-existing collections of
positive and negative instances of a concept.

This does not matter from the knowledge engineer’s point of view.
The induction algorithm simply leaves those attributes on one side and
fails to incorporate them in the final rule. The expert may or may not
then argue that it ought to have incorporated them. I am not implying

Donald Michie 383

that the dummy attributes are not performing some important task in
the cognitive economy of the expert. I suspect that they may be, just as
various superstitious beliefs play a useful role in many highly de-
veloped skills includingeven in athletics. But logically from the point of
view of incorporation into the final rulebase, they appear to be redun-
dant.

A further requirement is an oracle, a source of expert decisions for
the system to work from. The oracle can be one of a number of things.
It can be a human oracle, that is, an expert, or it can be a precomputed
database.

There is a well-known algorithm in two-person finite games with
perfect information, which makes it possible to take some nontrivial
endgame of only a few million legal positions in which chess masters
flounder, and by exhaustive backwards computation develop a
database, a lookup table, of positions paired with their game-theoretic
values. By expending a great amount of computational labor, we end
up with an oracle which is rather expensive to store. One application of
computer induction is to take such giant lookup tables and squeeze
them down into compact explanatory, descriptive, and predictive rules.

Another kind of oracle may be the external world. I will give two
examples. One is the task of predicting what the Dow-Jones index is
going to do in the next fourteen days. This was a student project at the
University of Illinois and the student, Helmut Braun, selected it him-
self. He also located a professional group willing to act as certifiers of
the quality of performance of the final system. In a graduate class we do
not want expert systems which are only as good as human experts. That
is for undergraduate students. In its run-time behavior it is reasonable
to demand of properly engineered knowledge bases that they do a little
better. The only way to find out in a given case is by getting authentic
experts to spend some of their time validating student exercises. Braun
found a company in Indianapolis that makes its money by publishing
regular forecasts of the Dow-Jones index. Their success is based on the
expert skill of the founder of the company.

There were thus two possible oracles that the student could use. He
could use the skilled forecaster himself, since he had available an
archival file of the last few years of his expert decisions. Or he could
take what would in general be expected to give a higher live1 of per-
formance in the induced product, namely, what actually happened, not
what the expert predicted. Did the index actually go up, or was it
roughly stationary, or did it go down? Braun did it both ways and he got
an “A” for that project. He also aroused interest in the accountancy
department of the University, and the work is now being extended.

My other example of taking events in the real world as an oracle, that is,
as a source of preclassified instances, is from the realm of control. We

384 ZYGON

tackled a task of this kind many years ago with extremely rudimentary
induction methods compared with the present day. The task was that
of balancing a pole on a motor driven cart that goes back and forth on a
track. It must not drop the pole, and it also must not run off either end
of the track-not a trivial task. An even more complex task would be
riding a bicycle. If one received a contract to develop a robot bicyclist,
the first task, as always, would be to work out a good set of mea-
surements to take and a frequency of sampling. The human is not able
to sample more than perhaps ten times per second. But the important
thing is that the only sample of expert decisions is that obtained by
monitoring the real-time behavior of a human bicyclist who is already
able to perform this skill. This is what is meant by a real-world oracle.

Can an expert system be generated exclusively from examples? It has
been done convincingly more than once, the first by R. Chilausky,
B. Jacobsen, and Michalski in the middle 1970s in the case of diagnos-
ing soybean diseases (see Michalski & Chilausky 1980a; 1980b). This is a
crop of considerable commercial interest to the state of Illinois. They
chose nineteen common diseases suggested by plant pathologist col-
leagues. These formed the attributes, some yes-no, some with result
sets containing as many as seven different values (see fig. 8).

A 0 I1 in PLI 12OK bytes of program space

SOY-BEAN DATA: 19 diseases

35 descriptors (domain sizes 2-7)

307 cases (descriptor sets with
confirmed diagnoses)

Test set: 376 new cases

>=% accurate diagnosis with
machine rules

83% accuracy with Jacobsen's rules
different origins

machine runs
using rules of

93% accuracy with interactively
- improved rule

FIG. %-Expert system generated exclusively from examples compared with hand-
crafted variants (from Chilausky, Jacobsen, and Michalski 1976).

Their training set comprised 307 cases, each presented as a list of
35 values paired with the name of the disease. They did the job both
ways, that is, using dialogue acquisition and using inductive acquisition.
They worked with Barry Jacobsen, a plant pathologist who specialized
in soybean diseases and who was already well known for a taxonomy
that he had developed himself. They got a rulebase by dialogue acquisi-

Donald Michie 385

tion which, when tested on 376 new cases, gave 83 percent accuracy.
This would have been encouraging were it not for the fact that by
merely inducing rules from the data the machine obtained a rulebase
of more than 99 percent accuracy. Only one plant out of the 376 was
misclassified when the rule was tested on new material.

When Jacobsen saw that, he worked hard in dialogue acquisition
mode using the computer facilities available, to see if he could improve
his rules. He got it finally to 93 percent accuracy. He then decided to
accept the machine-generated rules in place of his own as reference
material, and this he uses to the present day. It is a significant early
event-an example of a phenomenon that we will see more commonly.
The useful products to be obtained from knowledge engineering have
in the past been conceived entirely in terms of the run-time behavior of
the program. But if the rulebase itself can be structured and con-
strained in such a way as to remain intelligible and professionally
useable by the experts, then there is a product of a different kind,
namely, new and improved codifications (see Shapiro 8c Michie [in
press]). These have an independent value apart from whether they run
on the machine. Such codifications are positive contributions in them-
selves and are indeed welcomed by the experts as new reference mate-
rial.

Let us now consider Quinlan’s induction system, ID3. We start off
with a collection of instances which are already classified and then we
proceed as in figure 9 (see Quinlan 1983). Having developed a rule, the
algorithm uses it to classify new material sampled from the database.
Each example for which the rule gives the right answer, the algorithm
throws away. But whenever it finds a refutation example, it saves it,
because that has “tutorial” value for creating a better rule. When the
refutation file has grown to a preset limit then a new file of exceptions is
merged with the old working set to form a new working set. The entire
rule is then thrown away-rather shocking to many people because we
humans do not work that way. We are conservative about our theories,
and we try to hang on to them and patch them when we get refutations.
But the economics of ID3 are such that it does better to forget the old
rule, work instead on the augmented example set, and induce a new
rule from scratch. In a really hard case it may go around the iteration
loop 19 or 20 times, in the style shown in figure 9, until it has tested the
current version of the rule on a sufficiently large number of new cases
without finding a refutation-“sufficiently large” being a user-defined
parameter. Then it terminates. Unless the resultingrule is tested on the
entire universe of cases, there can be no guarantee that the rule ob-
tained will be 100 percent correct. Quinlan’s paper gives a technical
discussion of that point, with some rather surprising and encouraging

386 ZYGON

results concerning bounded error (Quinlan 1983). The main result
seems counter-intuitive: on the assumptions that Quinlan made in
order to do the theory, accuracy of the rule is only a function of the size
of the training set and is independent of the size of the universe.
Second, one finds oneself also surprised at how accurate a rule can be
obtained from how small a number of examples. Quinlan also reports
systematic empirical tests. All of the results fall well within the bounds
predicted by his theory.

ID3 was designed to work with large numbers
of instances. It starts by selecting a small
subset of them (the working set) and at each
cycle

1. Forms a decision tree that is correct for
the current working set

Finds the exceptions to this decision tree
among the other instances

Constructs a new working set from the current
window and the exceptions

2.

3.

FIG. 9.-Iterative refinement by ID3 of a classification rule in the form of a decision
tree (see Quinlan 1983).

Quinlan also reports an extension of the original problem that I gave
to the Stanford class. The original problem was from the chess end-
game king-and-rook against king-and-knight. Is the knight side lost
in two ply? In other words, is the position such that whatever the knight
does, the rook side can either capture the knight or checkmate on the
next move? This can be recognized more or less at a glance, certainly in
a few seconds by a master. But if the object is to write a pattern-based
program which can do fast “at-a-glance” recognition, it is an adverse
programming problem. Quinlan then tackled the next level of com-
plexity, knight lost in three ply. The rook side must spot whether there
exists a move such that whatever the knight does, then the rook side
kills him on the next move, either by capture or by checkmate. In terms
of cognitive complexity, it is a substantial jump. Chess masters can take
up to half a minute or so to classify such a position and in our experi-
ence just occasionally get it wrong. It is totally out of the question to
build an expert system for this task in conventional style other than
by reckless use of skilled manpower. Having elaborated a set of 49 prim-
itive attributes, Quinlan generated a decision tree inductively using a
training set of 715 instances. The decision tree had 177 nodes, that is,

Donald Michie 387

84 tests in the corresponding conditional expression. It was fairly
cheap to manufacture, requiring only 34 seconds on the Cyber 172
computer-leaning, it must be said, on much of the above-described
human work as regards selection of primitive attributes. By contrast,
the best expert system of the pattern-driven search variety that Quin-
lan could develop, using himself as both expert and knowledge en-
gineer in internal dialogue, took him months of work. That is not a
reasonable use of human resources to manufacture a program, when
an equally accurate program can be manufactured in 34 seconds on a
Cyber 172. But the denouement was even more striking. The run-time
performance of the machine-made decision program was five times
faster than the best specialized search program that Quinlan could
code.

On the face of it, that looks like a very useful breakthrough for the
software technology industry. A semiautomatic process can apparently
generate programs which are actually five times more efficient than the
best that programmers can code. There is no question that such pro-
grams and such ways of making programs will filter into software
practice as soon as the industry becomes aware that these straightfor-
ward but powerful tools exist. However, there are grounds for unease.
Quinlan’s decision-tree program, although it ran fast and accurately on
the machine, when shown to the chess master was completely opaque.
It was not a question of a few glimmers of sense here and there
scattered through a large obscure structure, but just a total blackout.
We have repeatedly confirmed the phenomenon with other chess
material in Edinburgh (Shapiro & Niblett 1982), and industrial as-
sociates have encountered it in, for example, circuit-board fault find-
ing and process control. If this method of manufacturing useful bits of
software has a very attractive feature, commercially attractive, does it
matter if such artificially generated materials are opaque? In some
applications it does not matter and a black box can be tolerated. But in
the very complex decision-making areas where there is the greatest
market pull, problems like control software for nuclear power stations,
or, shall we say, the United States NORAD nuclear warning system,
matters stand differently.

There are numerous areas where control software is already more
opaque than is safe. We recently did a two-year study for the European
Economic Community. What we found concerning opacity in hand-
programmed systems was worrying enough. But a source of rather
cheap automatically generated code which is intrinsically doomed to
add to that opacity must be regarded as even more worrying.

For the user who needs transparency in the generated code, over
very large and complex domains, a facility must be incorporated in the

388 ZYGON

induction package for the well-known strategy of “divide and conquer”
common both to artificial intelligence and to the structured program-
ming school. I am referring to the decomposition of a large problem
into subproblems, sub-subproblems, and so on, thus forming a proce-
dural hierarchy. This facility is not explicitly provided in Quinlan’s
algorithm. However, it is under development as a central feature of an
inductively oriented expert systems language designed by Stephen
Muggleton (1985) in Edinburgh. A version is available under the com-
mercial name RuleMaster.’ Preliminary results of its application to
meteorological forecasting and to other problems are summarized
below.

WILLARD is an expert system which forecasts the likelihood of
severe thunderstorms occurring in the central United States. Examina-
tion and interpretation of critical meteorological parameters (such as
temperature, moisture, winds, and pressure) by an experienced severe
thunderstorm forecaster yields ciues on the temporal and spatial do-
main of severe thunderstorms. The WILLARD expert system consists
of a hierarchy of thirty modules, each of which contains a single
decision rule. This hierarchy is on average four levels deep. All mod-
ules’ rules were developed using inductive generalization (although
RuleMaster allows expert authored rules). About 140 examples out of a
possible nine million situations were used in building WILLARD. It
can operate in interactive or batch forecast mode and gives a full
explanation of reasoning on demand. WILLARD has been found to
compare favorably with the United States National Severe Storm Fore-
cast Center over a number of test cases.

EARL is an expert system for diagnosing faults in large distribution
transformers. The repair or replacement costs of these large transform-
ers range from $150,000 to $1,500,000. A human expert has in the
past been employed in interpreting measurements of the amounts of
different gases dissolved in the cooling fluid of these transformers; the
relative quantities of these gases gives strong indications of possible
problems in the transformer. This expert system has been installed and
is being used by the Hartford Steam Boiler Insurance company. A
recent comparison showed that the expert system made the same
diagnosis as the expert it was based on in all 30 different test cases.

ARCH is a procedural expert system, built inductively, to carry out
robot plans in a blocks world. The problem involved many of the facets
of procedural expert systems, such as design and scheduling. ARCH,
like the more diagnostic expert systems (WILLARD and EARL), gives,
on demand, a full explanation of all decisions and actions made.

In conclusion, there is no compulsion for an information
technologist to be interested in this new field, but when other methods
fail there may be something of advantage here.

Donald Michit? 389

NOTE

1. RuleMaster is available through Intelligent Terminals Ltd. of Scotland and Radian
Corporation, Austin, Texas. For an account of the design features, including back
chaining and forward chaining and a finite state formalism conducive to control applica-
tions, see Michie, Muggleton, Riese, and Zubrick (1984).

REFERENCES

Chilausky, R., B. Jacobsen, and R. S. Michalski. 1976. “An Application of Variable-
Valued Logic to Inductive Learning of Plant Disease Diagnostic Rules.” Proceed-
ings of the Sixth Annual International Symposium on MuIti-Variable Logic, Utah.

The Art of ArGifcial Intelligence 1: Themes and Case Studies of
Knowledge Engineering. Pub. no. STAN-CS-77-621. Stanford, Calif.: Stanford Uni-
versity, Dept. of Computer Science.

Hunt, E. B., J. Marin, and P. Stone. 1966. Experiments in Induction. New York: Aca-
demic Press.

Michalski, R. S. and R. L. Chilausky. 1980a. “Knowledge Acquisition by Encoding
Expert Rules Versus Computer Induction from Examples: A Case Study Involv-
ing Soybean Pathology.” Intmt ionul Journul of Man-Machine Studies 12:63-87.

“Learning by Being Told and Learning from Examples: An Experi-
mental Comparison of the Two Methods of Knowledge Acquisition in the Context
of Developing an Expert System for Soybean Disease Diagnosis.” Intmt ional
Journal of Policy Analysis and Information Systems 4:125-61.

“RuleMaster: A Second-
Generation Knowledge-Enginee ring Facility. ” In First Conference on Artt$xial Intel-
ligence Applications, Denver, 5-7 December 1984, 591-97. Silver Spring, Md.: IEEE
Computer Society.

“Inductive Acquisition of Expert Knowledge.” Ph.D. diss., Univer-
sity of Edinburgh.

“Learning Efficient Classification Procedures and Their Applica-
tion to Chess End Games.” In Machine Learning: An Artiiicial InteUigence A#roach,
ed. R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, 463-82. Pa10 Alto, Calif.:
Tioga.

“A Self-Commenting Facility for Inductively
Synthesised Endgame Expertise.” In Advances in Computer Chess, 4 , ed. D. Beal.
Oxford: Pergamon.

Shapiro, A. and T. Niblett. 1982. “Automatic Induction of Classification Rules for a
Chess Endgame.” In Advances in Computer Chess, 3 , ed. M. R. B. Clarke. Oxford:
Pergamon.

Feigenbaum, E. A. 1977.

~ . 1980b.

Michie, D., S. Muggleton, C. Riese, and S. Zubrick. 1984.

Muggleton, S. 1985.

Quinlan, J. R. 1983.

Shapiro, A. and D. Michie. In press.

