
PHYSICS: WHAT DOES ONE NEED TO KNOW? 

by John R Albrzgbt 

Abstract. For the basic areas of physics-classical mechanics, 
classical field theories, and quantum mechanics-there are local 
dynamical theories that offer complete descriptions of systems 
when the proper subsidiary conditions also are provided. For all 
these cases there are global theories from which the local theories 
can be derived. Symmetries and their relation to conservation 
laws are reviewed. The standard model of elementary particles is 
mentioned, along with frontier questions about them. A case 
against reductionism in physics is presented. 
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Physics is the subject in which we consider the simplest systems and 
then attempt to  analyze them completely. Such a description of physics 
may seem not entirely serious in view of the reputation for difficulty that 
the subject has earned. But the systems are really chosen by physicists for 
their inherent simplicity; the difficulty comes with the attempt at  com- 
pleteness of description, since i t  has been found that mathematics is the 
descriptive vehicle that most clearly summarizes what is happening. 

In view of this definition, I will examine various fields of physics that 
have achieved a certain amount of success at the program of complete 
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analysis and understanding. For each special area of physics, certain 
questions are considered: (1) What is the historical background of the 
topic, and how has it been put to practical use? (2) What constitutes a 
complete description of a system? (3) What is the dynamical theory on 
which a complete description may be based? (4) What additional condi- 
tions are needed to augment the dynamical theory? (5) Is there an alter- 
native to the dynamical theory, based on a global rather than a local 
view? 

This set of questions emphasizes the importance of the theoretical 
structure of physics. It must be remembered that physics also is an 
experimental science, and that theories are not just ideas that have been 
made up by antisocial recluses who wear baggy sweaters and no socks. 
Theories are not valuable if they cannot make any connection with the 
real world. In this essay I shall limit the discussion to theories that have 
been tested often, with considerable sensitivity, and that have passed the 
tests: that is, they have been exposed to the risk of falsification and have 
survived. I shall not be able here to summarize the experimental basis of 
these theories. I shall also not attempt to survey all of physics, but 
instead I will concentrate mainly on those theories that Roger Penrose 
(1 989, 152) called "superb" because of their wide-ranging applicability, 
their accuracy, and their beauty. Some attention will be paid to theories 
that are not yet complete in the same way that the superb theories are. 
Because of space limitations I shall not consider cosmology in any detail. 

CLASSICAL MECHANICS 

The oldest superb theory in all of science is classical mechanics, the 
macroscopic theory of motion from the seventeenth century-the theory 
of Galileo Galilei, Rent Descartes, and Isaac Newton. It does a remark- 
able job of describing systems whose size corresponds to human scale; 
only for the very smallest and very largest systems do we need a better 
theory. Classical mechanics is useful as the basis for mechanical engineer- 
ing. It enables the precise calculations of the orbits of everything in the 
solar system; it makes possible the prediction of the motions of the 
planets years in advance of when they actually happen. Its principles 
govern much of what we encounter in our daily lives. 

A system in classical mechanics is construed as a set of points-each 
with its own mass-that are in motion; a complete description is achieved 
by getting a set of equations that tells us the space coordinates of each 
point as it evolves in time. These equations constitute the trajectoory of 
the system. This description is complete in the sense that it enables 
calculation of the past and future motion of the parts of the system. 
Given enough mathematical prowess, this information can be used to 
calculate other quantities of interest, such as the velocity, the accelera- 
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tion, the energy, the momentum, and the angular momentum. Since the 
time dependence is completely specified, the system is deterministic, 
with all the connections to religion and philosophy that are implied by 
that term. 

The dynamical basis for obtaining the trajectory of a classical system is 
the set of equations obtained from Newton’s laws, the equations of motion. 
They are differential equations of the second order, so that calculus is 
needed to set them up and to solve them for the trajectory. Here lies part 
of the reason why physics has a reputation for difficulty. The differential 
equations form a Local theory, since they are applied to the system at a 
specific point in space and time. The opposite would be a global theory, 
in which all points in space and time are considered together. 

To find the relevant solution to the equations of motion, we need to 
specify initial conditions. Like most differential equations, the equations 
of motion in classical mechanics have an infinite number of possible 
solutions, only one of which corresponds to the actual motion of the 
system. It is the initial conditions that render a solution unique and 
make determinism a possibility. The initial condition for a single point 
mass is usually a specification of the position and the velocity of the 
mass at a starting time. At this point it must be made clear that we do 
not need to know how to solve differential equations in order to teach 
the relation between science and religion. But it would help if-in a 
private setting-we made use of a computer to follow a simulation of a 
relatively simple system that evolves according to Newton’s laws, starting 
from a given initial state. By changing the initial conditions, we would 
see a different time evolution pattern. Some systems are so stable that a 
slight change in the initial conditions leads to an almost imperceptible 
change in the development of the system. Others are so unstable (the 
technical term is chaotic) that their evolution is drastically different if the 
initial conditions are altered even a little. 

Alternate formulations of Newton’s laws were developed in the eigh- 
teenth and early nineteenth centuries by Moreau de Maupertuis, Leon- 
hard Euler, Joseph Louis Lagrange, and William Rowan Hamilton. I will 
describe here the approach of Euler and Lagrange. We begin by writing 
the Lagrangian for a given system. For certain simple and important 
examples, the Lagrangian depends only on the positions and the veloci- 
ties of the particles that make up the system; it is calculated by subtract- 
ing the potential energy from the kinetic energy. Next we construct the 
sum of all Lagrangians for all the points between (1) an initial point in 
space and time and (2) a final point. This summation is called the action. 

There are many ways to calculate the action for a particular pair of 
points, depending on the path taken between the beginning and the 
end. The path that extremizes the action is the one actually used by the 
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system for its motion. The cakufus ofvariations is the branch of mathe- 
matics that we use to go from an extremized action to a set of equations, 
which turn out to be identical to those obtained directly from Newton’s 
laws (Yourgrau and Mandelstam 1968). This Lagrangian procedure is a 
global approach to mechanics, since it requires (in principle only-we 
never really have to calculate all possible action quantities) calculating 
the action through all possible paths in space and time. As mentioned 
earlier, a local approach calculates quantities at a single point and uses 
them to figure out what will happen next. Nevertheless, the global ap- 
proach leads to the same complete description that we get from the local 
approach. Global approaches are sometimes referred to as “modern tele- 
ology” (Barrow and Tipler 1986) because the system seems to act as 
though it knows it has to minimize (sometimes “maximize” should be 
used instead) the action, just as water acts as if it is supposed to mini- 
mize its potential energy by flowing toward the sea. 

CLASSICAL FIELD THEORIES 
If instead of a collection of massive points we consider a physical quan- 
tity (e.g., pressure, electric field, magnetic field, height of water above or 
below the mean level) that can be defined for each point in space and 
time, then this field qmntity can be treated in a way analogous to the 
displacement coordinate of classical mechanics. Theories of acoustics, 
electricity, magnetism, light, and fluid flow all can be considered in this 
way. To be specific, I will use James Clerk Maxwell’s theory of electro- 
magnetism as an exemplar for this section. The experiments of Benjamin 
Franklin, Charles Augustin de Coulomb, Alessandro Volta, Hans Chris- 
tian Oersted, Michael Faraday, and Joseph Henry all helped guide the 
way to a synthesis in which electric and magnetic forces are described by 
field concepts. The electric field is defined at each point by a vector with 
three components corresponding to x, y, and z, the three space coordi- 
nates; the magnetic field has a similar set of three components. Experi- 
ments by Oersted, Faraday, and Henry showed conclusively that the 
electric field and magnetic field are not independent of each other when- 
ever either one of them is changing in time. Maxwell synthesized a 
theory of both electric and magnetic fields and showed that these insepa- 
rable fields can propagate together as waves traveling at the speed of 
light. They are light. Maxwell’s theory describes light considered as any 
electromagnetic wave, visible or not. Whether the human eye can see the 
wave depends entirely on the wavelength. X rays, ultraviolet, infrared, 
microwaves, and radiohelevision signals are just as much light as visible 
light. Practical application of Maxwell’s electromagnetic theory includes 
much of electrical engineering-telephone, radio, television, radar, mi- 
crowave ovens, and the lighting that allows us to see when it is dark. 
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A complete description of an electromagnetic system requires that 
we know the three components of the electric field and the three 
components of the magnetic field as functions of space and time for all 
points. The dynamical theory that governs such systems is the set of 
four equations (as written in their usual vector form) called Maxwell's 
equations. They constitute the local theory, since all four are valid at 
each point of space and time. As in the mechanical case, they have an 
infinite number of solutions, and so the physical description of the 
fields requires additional conditions, analogous to the initial condi- 
tions of classical mechanics. These are called boundary conditions, since 
they often involve knowing the properties of the fields on a surface 
that surrounds an interior region; the fields are known on this surface 
but are unknown in the interior volume. With the given conditions 
and with Maxwell's equations it is possible to arrive at the complete 
description. 

The Lagrangian approach works for electromagnetism. The La- 
grangian must be replaced by a Lagrangian density (i.e., the amount of 
Lagrangian per unit volume), which is then turned into an action by 
summing over both space and time. The calculus of variations is next 
used to extremize the action to a maximum or a minimum. It should be 
no surprise to learn that the result of all this is the reappearance of 
Maxwell's equations (Jackson 1975, 597). Once again, the global theory 
contains the local one. 

The general features of electromagnetic theory presented here are 
typical of other classical field theories. A feature that often appears in 
such theories, including electromagnetism, is the propagation of waves 
governed by a wave equation that results from the theory. In all these 
cases there also is a global form of the theory. 

QUANTUM MECHANICS 

In 1925 and 1926, Werner Heisenberg, I? A. M. Dirac, and Erwin 
Schrodinger invented three different approaches to quantum mechanics, 
a new theory of matter in the small. It was quickly recognized that these 
formulations were consistent with one another. A fourth consistent ap- 
proach was invented later by Richard Feynman. Quantum mechanics 
rapidly became the method of choice for describing systems the size of 
molecules or smaller. The theory is not outrageously difficult, but it is 
unfamiliar to those who are used to classical physics. It has proved to be 
extremely practical, since without it there would be little or no under- 
standing of atomic physics: lasers would be a total mystery. Those work- 
ing in physics of the solid state would have been unable to make the 
progress that has led to transistors, integrated circuits, chips, and the 
associated technology of computers and communication. Nuclear 
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technology also depends on quantum mechanics to provide the basis of 
understanding. 

When we use the methods of Schrodinger, the complete description 
of a quanrum mechanical system resides in the wave function, psi, which 
is a field quantity very similar to those described in the preceding sec- 
tion. If we know psi as a function of time and the space coordinates, we 
know all that is knowable about the system. It happens that quantum 
mechanics does not permit us to know some of the things that classical 
mechanics allows. The celebrated example is that of Heisenberg's uncer- 
tainty principle, which states that we cannot know simultaneously both 
the position and the momentum of a particle to arbitrary accuracy. The 
best we can do is to calculate probabilities of finding the position within 
a certain range or the momentum in its range. It follows that Newtonian 
determinism is impossible in quantum mechanics, since the initial con- 
ditions required in classical mechanics to compute the trajectory are 
made unavailable as a result of the uncertainty principle. It must be 
emphasized that the uncertainty principle is not a starting point for 
quantum mechanics. It is a consequence of the basic assumptions of the 
theory. Heisenberg began by seeking a theory that would emphasize 
those aspects of atoms that could be directly observable; he was then led 
to a set of assumptions that constitute the theory. Not until two years 
later did he find that these assumptions implied the uncertainty princi- 
ple, and the logic is inexorable. If the uncertainty principle is wrong, 
then quantum mechanics must be abandoned. 

According to quantum mechanics, a system wherein the energy does 
not depend on time will get into a stationary state and stay there until it 
emits a photon (a small package of electromagnetic energy) and makes a 
sudden transition into a state of lower energy. There may in fact be 
several such states of lower energy into which the transition may occur. 
Quantum mechanics says that for any single example of a transition, it is 
not possible to predict into which state the system will jump; what is 
possible is to calculate the probabilities for jumping into the various 
states. If the experiment is repeated often enough, the frequencies of 
jumping agree statistically with those predicted by quantum mechanics. 
Again, the explicit denial of determinism is unavoidable. 

The dynamical equation that we use to find the wave function is 
either the Schrodinger equation or its relativistic generalization, the Di- 
rac equation. These equations have both been remarkably successful at 
enabling the calculation of the properties of atoms and molecules. They 
have been somewhat successful but less impressive in the analogous task 
for nuclei and elementary particles. In any event, we need to have 
boundary conditions in order to find the relevant solution (and discard 
the irrelevant ones) of the Schrodinger equation or the Dirac equation. 
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The procedures bear a close resemblance to those of classical field theo- 
ries; mathematical methods devised by Lord Rayleigh for analysis of 
classical light waves or sound waves have been taken over by quantum 
mechanics with little alteration. Furthermore, the Lagrangian formalism 
works in quantum mechanics in a way that resembles classical field 
theory. We might have expected such a property of the Schrodinger 
equation or the Dirac equation, since they are specific types of wave 
equation, mathematically akin to classical field theory. 

SYlVrMETRY AND CONSERVATION PRINCIPLES 

Physicists are very fond of conservation laws. If we can be sure that a 
certain physical quantity remains unchanged even though the rest of the 
system is changing drastically, then we say that the quantity is conserved. 
Such laws appear both in classical and in quantum physics. An impor- 
tant reason for stressing the Lagrangian in the preceding sections is that 
it is the best way to see the connection between symmetries and conser- 
vation laws. Noether's theorem states that if the Lagrangian has a specific 
type of symmetry, there will be a corresponding conservation law for the 
system described by that Lagrangian. Already in the case of classical 
mechanics we can see examples of this truth. If the Lagrangian does not 
depend explicitly on time, then the energy will be conserved. The sym- 
metry is one of time translation: as time passes, the Lagrangian remains 
unchanged; therefore, it is symmetric in time. A similar principle arises 
for each space coordinate: if a change in the x coordinate leaves the 
Lagrangian unchanged, then the x component of the linear momentum 
will be conserved. In other words, invariance or symmetry under space 
translation leads to conservation of momentum. Invariance under rota- 
tion through an arbitrary angle implies the conservation of angular 
momentum. 

A more subtle type of symmetry, called gauge invariance, arises in 
Maxwell's electromagnetism. The invariance already is present in the 
local form of the theory; if we perform a special type of transformation 
(a gauge transformation) on the electric and magnetic potentials, the 
electric and magnetic fields will remain unchanged, and there will be no 
observable physical consequences of the transformation, since the fields 
contain a complete description of the system. But if the transformation 
is done on the Lagrangian, it leads to conservation of electric charge, one 
of the most revered principles in all of science. 

The great respect that physicists have developed for conservation laws 
might lead one to think that nearly every physical quantity obeys such a 
law. Such a belief would be mistaken, since there are many complicated 
combinations of physical quantities that are not conserved. They are 
unrelated to any symmetry of the Lagrangian. 
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There are three discrete (as opposed to continuous) symmetries that 
have been studied in great depth in the second half of the twentieth 
century: parity (P), charge conjugation (C), and time reversal (T) (Zee 
1986). Parity refers to the transformation in which all three space coor- 
dinates (x, y, z) have their algebraic sign changed. This transformation 
incidentally changes the left hand into the right. Charge conjugation 
changes a particle into its antiparticle (electron into positron, proton 
into antiproton, and so on). Time reversal, as the name implies, causes 
the clock to run backward (Sachs 1987). 

All of the theories considered above exhibit invariance under C, P, 
and T separately or in any combination. It was once thought that all of 
physics had to be invariant under all three symmetries, but the carefully 
constructed suggestion of T. D. Lee and C. N. Yang in the 1950s led to 
several experiments that demonstrated conclusively that P is not con- 
served in the weak nuclear interaction. It was and is still believed that 
physics is invariant under the product CPT; efforts to construct a theory 
without this invariance have failed. So it follows that if P is violated, 
then at least one of the other two symmetries must also be violated. The 
correct answer is C; when P is violated, C is also. The combination of 
CP (and therefore T) is conserved most of the time, but in the 1960s an 
experiment was performed that was the first in a sequence to show that a 
small violation of Tcan exist. 

These discrete symmetries and their violations may seem unimpor- 
tant, but they point to large cosmological issues: why is it that we are 
made of protons, but antiprotons are so rare? Is there an imbalance of 
matter over antimatter in the universe? Or is the imbalance just a local 
effect that is averaged to equal amounts of matter and antimatter if we 
looked at more of outer space? If the imbalance is global, then how did 
the universe get this way? 

Another example of the breaking of a discrete symmetry occurs in 
biological systems, where a specific preference for right-handed or left- 
handed molecules occurs in apparent violation of parity. Sugars, amino 
acids, and DNA all exhibit this effect. On a larger scale, handedness 
appears in the development of flounders and in the bicameral human 
brain. 

ELMENTARY PARTICLES 

The notion that all matter is made of many copies of a small number of 
building blocks can be traced to Democritus in ancient Greek culture. In 
the nineteenth century, the advances of chemistry led to the idea that 
atoms really exist and that they are the fundamental building blocks. The 
discovery of the electron and of the nucleus of the atom changed all that. 
The nucleus itself--after 1932 when James Chadwick discovered the 
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neutron-is known to consist of a certain number of protons and neu- 
trons. Nuclear physicists saw their task as the elucidation of the forces 
that hold the neutrons and protons together. To gain insight into the 
situation, they bombarded nuclei with projectiles, using ever-increasing 
energy in the mistaken hope that they would get the resolution to “see” 
the structure of the nucleus. Instead, they saw a great variety of species 
of particles-enough to threaten exhaustion of both the Latin and Greek 
alphabets to find symbols to designate the discoveries. Clearly, not all of 
these new particles could be fundamental in any meaningful sense. 

A consensus has been achieved, called the standard modef, in which 
the fundamental building blocks are called quarks. There are six types of 
quarks (up, down, charmed, strange, top, and bottom), and only the 
first two types are needed to explain conventional nuclear physics. A 
proton is not really an elementary particle; rather, it is made of three 
quarks (two up-quarks and one down-quark). A neutron is made of two 
down-quarks and one up-quark. Quarks are held together by gluons 
(there are eight species). Also fundamental are leptons, of which the six 
types are parallel to the six types of quarks. Both quarks and leptons 
obey the Dirac equation of quantum mechanics; therefore, each species 
has a corresponding antiparticle that has the opposite sign for its electric 
charge and various other properties as well. Mesons are particles once 
thought to be elementary but which are now understood to consist of a 
quark and an antiquark held together by gluons. 

The standard model answers certain questions about fundamental 
particles but leaves others to be answered by future research. For exam- 
ple, why are there exactly six species of quarks? Why do the quarks and 
leptons have the masses that are observed? Are all these particles really 
fundamental, or is there a deeper layer for us to probe? Will we learn 
that there is a much smaller number of real4 fundamental particles, and 
that the ones we see are only composites? 

ANTIREDUCTIONISM 

Physicists often are accused of being reductionist-believing that physics 
could in principle explain all the more complicated sciences, if only the 
time and the funds to figure out how were available. Dirac (1929) 
expressed such a vainglorious view: “The underlying physical laws neces- 
sary for the mathematical theory of a large part of physics and the whole 
of chemistry are thus completely known, and the difficulty is only that 
the exact application of these laws leads to equations much too compli- 
cated to be soluble.” Such an attitude is not likely to make a physicist 
popular with colleagues from other departments. But it is misguided for 
other reasons, since physics contains within itself strong weapons to use 
against reductionism. Three examples follow. 
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Exchange symmetry or antisymmetry is the first example of how 
reductionism is misleading. We can study the properties of a single 
isolated electron and feel that we have achieved the kind of complete 
understanding so desired in physics. Such study does not prepare us for 
what happens when two electrons are in the system. Their wave function 
is antisymmetric: it must change its algebraic sign every time we exchange 
the two electrons-a fact that does not follow from the one-electron 
theory but which has profound significance for the rest of science. Nu- 
clear bonding, atomic structure, and molecular bonding are all possible 
because of the exchange antisymmetry of electrons. 

A second example is the more general category of collective effects. 
When large numbers of atoms get together, we can observe phase transi- 
tions-solids melting to liquids, liquids boiling to gases, and so on. The 
sharp discontinuities from these phase transitions are not predictable 
from the one-atom theory. Condensed matter physics is replete with 
other examples of phase transitions involving order versus disorder: fer- 
romagnetism, superconductivity, superfluid helium, and so on. 

A third example is that of symmetry breaking. The parity violations 
seen in various organic molecules are not derivable from the single-atom 
theory. Inorganic molecules can show such effects at a simpler level: the 
water molecule has an electric dipole moment (i.e., one end of the mole- 
cule has a positive charge, the other a negative charge), a fact that appears 
to violate both parity and time-reversal invariance if we know only the 
properties of hydrogen and oxygen by themselves. Collective interaction 
yields qualitatively new phenomena. For all of its beauty, elegance, intri- 
cacy, practical worth, and closeness to the Mind of the Creator, physics 
does not necessarily hold the only key to the universe. 
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