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Abstract. This article seeks to explain the correspondence
between human intelligibility and that of the physical world by
synthesizing the contributions of Jean Ladrière. Ladrière shows
that the objectification function of formal symbolism in mathe-
matics as an artificial language has operative power acquired
through algorithm to represent physical reality. In physical theo-
ries, mathematics relates to observations through theoretic and
empirical languages mutually interacting in a methodological cir-
cle, and nonmathematical anticipatory intention guides mathe-
matica l a lgor i thmic explorat ion. Ladrière reasons that
mathematics can make the physical world comprehensible
because of the presence of a rational principle in both kinds of
intelligibility.

Keywords: correspondence; formalism; intelligibility; Jean Ladrière;
linguistic philosophy; rational principle.

Arthur Peacocke in his article published in this journal confessed that his
discovery of the intelligibility of the natural world through scientific
investigation led him to infer the existence of some “suprarational”
ground, which he identified as “God” (Peacocke 1994, 642–43). This
inference is Peacocke’s personal testimony that the inquiry of scientific
realities need not negate theological realities; on the contrary, scientific
research led him to marvel at the intelligibility that demands an explana-
tion pointing to God’s existence. Arguing against methodological reduc-
tionism being practiced by many in the scientific community, he aimed
to justify that theology, irreducible to other disciplines, has a rightful
place on the map of knowledge (Peacocke 1994, 644–50). Peacocke was
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certainly correct to affirm that reality exists at different levels and that
theology cannot be restricted within the boundaries of psychology,
anthropology, or sociology. His personal claim of the existence of a
suprarational ground, however, invites a substantiating reflection on how
intelligibility is possible. Although a confirmation of the existence of such
a ground is not yet a proof of the existence of God as a personal deity
(since the former only concerns the nonpersonal rational principle), such
confirmation will strengthen Peacocke’s case by showing that reality is a
complex whole. The inquiry into the intelligibility issue will lay a philo-
sophical foundation based on which the relation between the suprara-
tional ground and God may be further investigated at the cosmological
level. Focusing on the disciplines of mathematics and physics, Jean
Ladrière has attempted, in his various writings, to explain the intricate
process of intelligibility. To help substantiate Peacocke’s inference, this
paper will present a synthesis of Ladrière’s view. (References including
only dates and page numbers refer to Ladrière’s work.)

How can physical theories formulated in mathematical terms predict
experimental results?1 Working in mathematics is a mental activity, but
doing experiments involves observation of the physical world. Assuming
the two are congruent seems to imply that human reasoning is somehow
linked to the ground of intelligibility of the physical world. Ladrière
points out that mathematics, owing to the objectification function of
symbolism, is endowed with an operative power that when applied to
physical theories can work to reconstitute the physical reality. Moreover,
the reason mathematics can be used in physical theories to interpret the
empirical world is that the rational principle is inherent in formal rea-
soning as well as immanent in the world. We will focus on three themes
developed in the thought of Ladrière: (1) the operative power of formal-
ism in mathematics, (2) the application of mathematical formalism to
the empirico-formal science of physics, and (3) the rational principle
and ontology. The first deals with human intelligibility in formal think-
ing. The second addresses the issue of how human intelligibility can
comprehend the intelligible world through use of formal construct. The
third tries to answer why there is concord between human intelligibility
and the intelligibility of the physical world.

THE OPERATIVE POWER OF FORMALISM IN MATHEMATICS

To understand the operative power of formalism, we must ask what for-
malism is, by what means it acquires its operative power, and what the
world of mathematics is like.

1. FORMALISM AS AN ARTIFICIAL LANGUAGE. Formal thought is
distinguished from nonformal in that, while the latter must refer to the
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object through some kind of intuition (such as perception), the former is
pure thought and therefore coincides exactly with the object contem-
plated. In a sense formal thought “reduplicates itself entirely in the act of
its effectuation” (1972c, 126). Thus, a formal system is detached from
life experience and is a reality in the ideal order. This is useful for our un-
derstanding of the phenomena of our world. This system permits the ex-
ploration of many possibilities in abstract space without involving the
physical rearrangement of objects (1974b, 296). More, a formal system is
an artificial language defined syntactically by a system of rules that allows
a person to decide the truth value of a certain sentence procedurally
(1972d, 19). In other words, formalism permits us to determine with
certainty, through a step-by-step process, whether a proposition belongs
to the truth domain already created by that formalism. By means of strict
and complete rules, operations can be performed to augment that do-
main of pure thought; what an operation does is to effect the “pure rela-
tional schemas” (1972c, 122, 127).

Unlike the signification of each lexical entry of a dictionary, that
which is derived from a formal system seems inexhaustible. A formal
system could unfold ever new meanings as the exploration—controlled
by internal requirements—continued without ceasing (1972e, 64).
Indeed, meaning is generated in a formal system when, on one hand, a
rightly constructed expression conforms to the formational rules of the
system and, on the other hand, it fits into the relations of the network
formed by other derived expressions (1957, 40). It appears that formal-
ism has a life of its own independent of our daily experience. It is free to
acquire its power from its mechanically operative ability.

Nevertheless, no matter how powerful a formal system is, it is with-
out interest if it is not related to a domain of objects. Our concern here
is specifically mathematics as a domain of reference that deals with ideal
objects such as numbers, sets, algebraic structures, and spaces (1972d,
20–21).

2. FORMAL SYMBOLISM. The real fruitfulness of an idea com-
mences only when an algorithm is invented. The case of infinitesimal cal-
culus is an example. If formalization makes a mechanical algorithmic
operation possible, this is a result of the thematization of the operation
by use of symbolism (1972e, 51–52). This point distinguishes formalism
from ordinary language, in which there is a fusion between all the ele-
ments of a discourse (1957, 435).

A formal symbol is a basic unit in the artificial language of formal-
ism, and its only function is to make abstract formal structures accessi-
ble to human consciousness. As a tool for presentation, formal symbols
are only conventional. They are necessary to make formal structures
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manifest, but no one particular set of symbols is irreplaceable (1972d,
18–19; 1972e, 48). Symbolic language is indispensable in formal opera-
tion because it has a dual property. On the one hand, symbolism pres-
ents itself as an object independent of human consciousness and
accessible through perception. On the other hand, it could present again
the steps of the mental act that take place within the human mind.
Hence, through objectification by way of symbolic presentation, the
steps of mental acts can be systematically analyzed with rigor (1957,
439).

To illustrate the use of formal symbols in an operation, let us refer to
the generation of whole numbers. Whole numbers may be generated by
defining an operation of which an initial object, say o, is operated on
successively by a predicate, say S. By repeating the process, an infinite
series of ideal objects can be generated as follows: o, So, SSo, and so
forth. When interpreted with reference to the mathematical domain,
these ideal objects correspond to whole numbers of 0, 1, 2, and so forth.
Here, via the use of formal symbols, the seemingly unmanageable infin-
ity characteristic of the whole number series can be captured (or thema-
tized) in the repetitive application of the generative algorithm.

However, we have more than one way to express the ideal objects of
whole numbers, in fact, an infinite number of ways, depending on the
base chosen. Thus, the ideal object designated by SSSo could be equally
expressed by 3 in base ten and by 11 in base two. Likewise, a certain
rational number such as 1/3 can also be expressed by 0.333. . . .

When we move beyond symbolic designation of numerical objects to
algebraic reasoning, the use of symbolism is even more fruitful. This rea-
soning has moved one to consider the operation per se that leads to the
development of abstract algebra. At a higher scale of abstraction, beyond
that of abstract algebra, operations become more and more detached from
any immediate reference to objects to be operated on. The most abstract
discipline at present is combinatory logic, which is a study of formal
operations called combinators (1972e, 46–57; 1972c, 123).

3. INTERNAL FECUNDITY OF THE MATHEMATICAL DOMAIN. By
means of symbols, the operative power of formalism can be put to work.
This operative power opens up a world of unlimited riches.

An Inexhaustible Domain. Exploration of the mathematical domain
reveals that it has no known a priori boundary. This condition might be
hinted at when we turn to the study of axiomatic systems. As in all for-
mal sciences, axiomatic systems are especially important in mathematics
because of their explicit structures, and some problems can only be
treated by axiomatic method. Through the application of deductive rules
to the axioms, all the true sentences can be generated. It has been noted,
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however, that not all parts of mathematics can be formulated as axio-
matic systems and that axiomatization is always conditioned by a reality
beyond the system itself. This inadequacy in axiomatic systems points to
the fact that, however important the method may be, it is impossible to
determine the whole of the mathematical domain once and for all
(1972d, 19; 1966, 221–22).

More generally, Gödel’s theorem seems to point in the same direc-
tion. The theorem may be stated as follows: “In any formal system ade-
quate for number theory there exists an undecidable formula—that is, a
formula that is not provable and whose negation is not provable” (Van
Heijenoort 1967, 348). In order to clear up common misunderstand-
ings concerning the theorem, Ladrière explains what it does not mean.
Gödel’s theorem does not say that there is something wrong with the
formal method nor that there is a hidden contradiction at work in a for-
mal system (1957, 404–5). Instead, the theorem says that a strictly
deductive approach can cover only a limited field of formal reasoning.
As a result, intuitive truth is indispensable in formal constructions
(1957, 410–13). This intuitive power makes an infinite extension of the
mathematical domain possible. In each of the terms that can be effec-
tively attained, there exists implicitly the possibility of arriving at a new
horizon beyond the present one. As an example, Georg Cantor’s transfi-
nite numbers are constructed when the limit of denumerable infinity is
conceived. They are not arrived at by deduction (1957, 440–43; cf.
George Gamow 1953, 25–34).

Possibility of Progress. With no a priori boundary to the mathematical
domain, progress can be made under three conditions—schematization,
thematization, and disengagement. With schematization, one begins with
a certain concrete case that is readily accessible to perception or intuition,
and one varies the individual aspects of that case until a more general
scheme, which underlies all variations, is obtained. As an example, topol-
ogy is originated from the problems generated by common geometrical
objects such as a sphere and a torus. In schematization, one starts from
some very elementary concepts to form more complex mathematical
ideas on which perception no longer has any influence. Through gener-
alization or comparison, one can discover new mathematical objects.
Therefore, once the concept of one dimension is defined, other higher di-
mensions can easily be generated mathematically. With thematization,
one posits a theme on a theory of a certain level in order to build up the
content of a theory at a higher level. The lower-level theory serves as a
kind of experiment for the formation of the higher-level theory. For in-
stance, the theory of groups of transformation is a systematic study of op-
erations that one uses in various geometries. The theory brings together
the seeming diversities into one general framework. In disengagement, one
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schematizes the common characteristic traits of various theories to form a
domain of more generalized formal objects. Just as in the case of general
topology, the basic ideas are related not only to the study of topological
properties of figures but also to the study of real variables.

In all three situations, we see a common process of detachment from
the concrete and an attempt to look for the common underlying struc-
ture and the representation of new objects by appropriate formalisms. It
is a process from the particular to the general through abstraction. Pro-
gress of this upward movement also helps progress in the downward
direction, however, for only when the general theory is known can the
particular be better understood and applied in concrete situations. “The
being” of mathematics is not static but is always “the becoming” (1966,
227–28, 230; cf. 1972d, 22).

Possibility of Mutual Exchanges. Another sign of the internal richness
of mathematics, besides the possibility of progress, is the possibility of
mutual exchange between branches of mathematics. One of the phenom-
ena is autoapplicability, which is to say that one branch of mathematics
can solve the problem of another branch. Hence, the algebraic question
of quadratic forms is solved by repositing the problem in terms of conic
sections, and the problem raised by the equations of the fifth degree can
be treated by group theories. Mathematics seems to have provided for it-
self instruments in some parts of the mathematical domain to solve its
own problems even before a question is raised. Ladrière calls this “retro-
spective fecundity” (1966, 231).

The possibility of mutual exchange indicates that areas covered by dif-
ferent branches of mathematics or systems of formal representations may
overlap. This assumption seems to be supported by the observation that
there exists a plurality of axiomatic approaches to the same problem
(1966, 218–19). The reason is that different formulations are systems of
symbolic representations referring to the same reality, not the reality itself.

Possibility of Unification. If there are exchanges between different
parts of mathematics, do these parts then make up a whole? Since there is
no a priori limit to the mathematical domain, there should not be a pre-
existent whole prior to formal construction. With the dynamic nature of
becoming in regard to mathematics, however, there is a unification pro-
cess presupposing a common foundation for all branches of mathematics.
To date, the most promising theory for establishing this foundation
seems to be set theory.2 As mathematical unification continues to prog-
ress, a complete unity may be viewed as a “limit situation” (1966,
231–32).

In conclusion, we may say that mathematics forms a synthetic system
within which ever new objects can emerge as the unending exploration
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continues. This synthesizing character makes the mathematical world
akin to the physical world, which again upon investigation has the
property of incessant unfolding.

THE APPLICATION OF MATHEMATICAL FORMALISM TO PHYSICS

Although the application of mathematical formalism is not limited to
physics, physics is the most basic and representative of all other branches
of empirico-formal sciences. Here again we ask: In what manner can the
outcome of mental activity be useful to the understanding of physical phe-
nomena that have no direct link with the human mind? Although modern
sciences do not answer the ultimate question of why mathematics can be
applied, they have made assumptions about nature so as to make applica-
tion possible. Under these assumptions mathematics is related to observa-
tions through two languages—namely, theoretic and empirical languages.
Scientific theories progress via the interactions of these two languages in a
methodological circle, yet mathematical formalism demonstrates its real
power in the theoretic conceptualization process.

1. THE PRESUPPOSITIONS OF PHYSICS AS AN EMPIRICO-FORMAL
SCIENCE. In modern sciences such as physics, the assumptions made
about our physical world are connectivity, closure, reducibility, mathe-
matization, empiricity, and emergence. Connectivity assumes that all
natural events are directly or indirectly linked with one another. Closure
supposes that all events in nature can be explained by other events of na-
ture. Reducibility states that all particular events and figures manifested as
physical phenomena can be interpreted in terms of, and hence reduced
to, interactions. Mathematization asserts that the interconnectivity of
events governed by the principle of regularity can be formulated as laws
in mathematical terms. Empiricity grants that all the propositions can be
proved by means of local observations. And finally, emergence presumes
that a higher level of reality may emerge from a lower one (1987, 16).

Although the assumption of emergence may not have any conceivable
direct bearing on the applicability of mathematics to the study of physics,3

others have important implications. If connectivity presupposes a logical
universe, then closure assumes no other causes except those within the
physical universe itself. Whereas reducibility assumes the possibility of
schematization of physical phenomena, mathematization takes for granted
the possibility of formalizing what is schematized. And last, empiricity
takes advantage of the universal regularity in the universe to make local
observation representative of all other possible observations under the
same controlled conditions. In sum, we may say that in order for mathe-
matical formalism to be applicable to the understanding of the physical
universe, we have to assume a logical universe (1974a, 235).
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2. APPLICATION OF FORMALISM IN THEORIES. In agreement with
the above presuppositions, a physical theory can be expressed in terms of
mathematical formalism. The fact that physical theories are built on for-
mal constructs may be testified to by both classical and quantum theo-
ries. On the classical side, Newtonian mechanics postulates the existence
of space, particles, and forces in the inertial frame. That conception of
the universe, however, is replaced by Einstein’s theory of general relativity,
which reduces forces to space curvature (1972a, 165). The very extension
of meaning from Newtonian to relativistic mechanics has presupposed a
dilatable universe of reference made possible by formal constructs.
(1974a, 233–34).

When we come to quantum theory, we may think that the random-
ness of quantum behavior does not allow us to use formalism. Yet,
despite seemingly unruly behavior in the quantum world, one can use
the “wave-function,” a formal construct whose exact meaning is not yet
known, to make useful predictions about its state of affairs (1972e,
61–62). In Ladrière’s words: “If we regard the state of the system as
determined by the wave-function, we then recover an unambiguous
connection between states” (1970b, 74).

Even though both classical and quantum theories employ formalism,
their approaches are radically different. In the presumably deterministic
classical theories, what is expressed in formalism is an ideal situation in
which experimental errors are not included and so must be considered
separately. In the intrinsically statistical quantum theory, the formalism
incorporates observational errors into itself (1970b, 74).

A physical theory nonetheless is not just mathematics; it always has
an added semantic dimension of the physical world. This is well illus-
trated by the consistent use of models that translate mathematical for-
malism into meaningful scenarios. A model is a mathematical
construct that approximates the conditions of a certain physical phe-
nomenon (1974b, 289; 1986, 44). On one hand, a model represents a
domain of realization in which theories can be confirmed; on the
other hand, it represents a provisional schematization of the situation
(1977, 95). Thus, if the transparent scheme of mathematics is substi-
tuted for the opaque reality of physical phenomena (1977, 98), a
model makes the reality operatively intelligible and the scheme physi-
cally meaningful.

Moreover, it is understandable that nonmathematical axioms can play
a very important role in physical theories. As a case in point, the princi-
ple of dynamics, which expresses the proportionality between accelera-
tion and force, can never be obtained from mathematics alone. In fact,
this type of consideration, which is based on a certain opinion about the
working of our universe, has a normative character even to the extent of
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controlling the choice of mathematical formalism employed in the the-
ory. The belief in the principle of invariance actually governs the devel-
opment from Newtonian mechanics through relativity to quantum
mechanics. In Newtonian mechanics the concept of inertial frame, in
which physical laws are applied, is based on the belief of invariance
under Galilean transformation that leaves out the consideration of time.
In general relativity the liberation from the classical understanding of
inertia is built on the belief of invariance under the transformation of
space-time. And in quantum mechanics the central issue of symmetry,
which governs the behavior of the fundamental physical quantities, is an
even more general notion of invariance (1986, 34–36).

Besides the principle of invariance, the principle of causality also con-
tributes very much to the advancement of physical theories (1972a,
185). Whereas the former principle points to harmony in nature, the
latter refers to a stable universe; yet both bear witness to the more gen-
eral principle of conservation (1970b, 78–80; 1974b, 298–301).

3. THE TWO LANGUAGES. Unlike mathematics, an empirico-
formal science such as physics involves two languages: “a theoretic lan-
guage to express certain relations of general order between the entities
and properties in terms of which one can analyze the reality to be stud-
ied, and an empirical language to describe the empirically observable as-
pects of this reality and the possible operations on it” (1972d, 23). The
theoretic language has theoretic terms referring to entities or to proper-
ties that may not be observable, such as electromagnetic field or inertial
mass. The empirical language also contains empirical terms that concern
observable entities and properties, such as length or weight. All these
terms in both languages are not derivable mathematically although both
make use of mathematical tools.

In order to bridge the two languages, correspondence rules must
link a theoretic term to a measurable, empirical one. For example, the
idea of temperature in the theory of thermodynamics may be linked to
the measurement of temperature by a thermometer according to corre-
spondence rules. Basically, a physical theory is made up of two sets of
propositions that are assumed true unless shown otherwise: the first is
a set of axioms from which other theorems may be deduced, and the
second is a group of correspondence rules. What amounts to an expla-
nation is a successful deduction made from the axioms and, when
translated into empirical terms by correspondence rules, found to be
in agreement with the observed results in the context of the reality in
question—namely, the initial conditions. Hence, a physical theory,
though formulated mathematically, always anchors in the physical re-
ality (1972d, 22–25).
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4. THE METHODOLOGICAL CIRCLE. Truth in physics is not a
given but a becoming. In the methodology of physics, there is a circular-
ity toward truth (1972d, 43). In accordance with the two languages, this
circle has two methodological moments. The theoretic moment is a pri-
ori in the sense that it is a provisional logical construct governed by gen-
eral principles (such as the conservation principles and variational
principles) built on the assumption of the intelligibility of nature. This
theoretic moment is nothing less than a potentially anticipatory precom-
prehension of the domain under investigation. The empirical moment is,
however, affected by the choice of formalism employed in the theoretic
moment—in the sense that, through the use of correspondence rules, this
choice controls the way data are taken and interpreted. Therefore, naked
empirical truth does not exist, and all observational propositions are re-
visable. Thus, the object is reached only through theoretic interpretation
(1972d, 29–31). The methodological circle, however, does not stop here,
for theory must be verified by empirical experience (1972d, 27–28;
1972b, 83). Although observation may be compared to an indicator, the-
ory can be viewed as a resonator. If the theory is a correct “conjectural re-
construction of reality” at least for a certain domain, scattered local
observations will be able to touch off a resonance in the theory that cov-
ers the “continuum of reality” (1972d, 32).

Yet theoretical prediction may not always agree with the observed
result, or the theory may suggest a situation for which it cannot give an
interpretation. These situations may be termed “the condition of inte-
gration,” which calls for a revision of the internal configuration of the
theory in order to overcome the contradiction or to close a gap. Repeat-
ing the process of the methodological circle integrates more and more
varied aspects into the theory, and it becomes more autonomous with
respect to the environment (1974b, 303–4).4

In the methodological circle, although empirical verification is
indeed indispensable, the meaning does not lie there but, rather, in the
theoretical act of constituting (1972a, 170).

5. THE THEORETICAL ACT OF CONSTITUTING. Ladrière believes
that in the reconstitution of reality the manifestation movement is rear-
ticulated. Through the act of constituting, the interconnectivity or “con-
catenation” between phenomena may be traced (1952, 33). As the
theoretical “terms are connected by a connecting operation,” meanings are
engendered through the seizing of this operative movement (1972a, 170).
In the horizon of operation, one may preview the world as “a regulated
system of interactions” and analyze its “enchained elementary actions” ac-
cording to their “intrinsic nature” (1952, 36). In the reconstitution of re-
ality, operation in a physical theory possesses the prospective power to
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explore the unknown world, because the logic which is supposed to be
immanent in nature may be reeffectuated in the abstract schema in the
act of reconstituting (1972c, 134; 1974b, 288). The content of the theo-
retical reconstitution “is extended presumptively to cover regions still un-
explored” (1972d, 27–28), hence we may “anticipate experience” and
“intend a not-yet-present reality” (1972b, 83).

Such a previsional power of a physical theory as a “conceptual sys-
tem” (1972a, 171) is a result of “the formalization of an anticipatory
intention, of a foreunderstanding of the domain [of investigation]”
(1972d, 28). The recourse to formalization grants the foreunderstand-
ing a precise content and an operative status so that the power of algo-
rithm may be exploited (1952, 34). Conversely, the foreunderstanding
is always present in the formal operation (1972d, 28–29) to give the lat-
ter physical intention as well as guidance when nonmathematical deci-
sions have to be made (1977, 94). These decisions include even the
choice of the proper formalism itself (1986, 33–34). Formalism admits
what is possible, prior to experience, regarding the characteristics of the
physical phenomena studied (1972e, 60; 1971, 258–59), but by nature
it remains underdetermined with regard to reality (1986, 32).

The inherent use of mathematical formalism in the conceptualization
of physical theory means that there exists an internal exigence within
the concept that pushes for the advancement of theories in the right
direction (1977, 94; 1986, 43). For instance, the transition from the
theory of Newtonian mechanics to that of relativistic mechanics is not a
result of subjective initiative but of the internal structural requirements
indicated by fruitful contradictions, even prior to the conscious compre-
hension of the new situation (1972a, 171–72).

In what way is mathematical formalism applied to the study of phys-
ics? This is not a simple question to answer, but clearly its most fruitful
application is in the conceptualization of theories. Although foreunder-
standing guides the algorithmic exploration, mathematics gives foreun-
derstanding the operative power. Together, in formalizing the
foreunderstanding or anticipatory intention, we endow the physical
theories with predictive power.

THE RATIONAL PRINCIPLE AND ONTOLOGY

We have seen how formalism is applied in physical theories; now we
are to inquire about why that is possible. Our reading of how formal-
ism is applied in the physical universe seems to suggest that there is
indeed a metaphysical connection between mathematical thinking and
the logic immanent in physical phenomena. In order to address this
question, we ask whether there is a dynamic relation between form and
matter, how the two may be structurally linked, and what prospect
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there is of showing the correctness of the structure. More, granting
that the structure is as proposed, we need to ask how physical manifes-
tation is made possible.

1. TRAFFIC BETWEEN FORM AND MATTER. In the study of physics,
the quantities in the hypotheses of the theory are associated with an implicit
ontological hypothesis in the sense that we expect to see in the empirical
world the existence of entities possessing the properties projected by the
theory (1971, 254). Physical theories as conceptual systems are reconsti-
tuted realities, and the reconstituting movement is the reverse of the mani-
festing movement. We may therefore be able to understand more
fundamentally how physical manifestation takes place. This upward move-
ment shows us that, beyond the naked appearance in things, there is a
deeper meaning that may be made explicit by articulation consonant with
an internal structure immanent in what is manifested (1988, 249; 1984a,
2 : 219). This structure is logical, not just in the sense that it is merely the
set of rules governing coherent discourse, but, more importantly, in the
sense of what Martin Heidegger has in mind: “a ‘bringing together’ which
makes appear” (Ladrière 1972e, 65). In Ladrière’s own words,

It is an act of selection and liaison which accompanies things in their coming to
presence, which, with them, retraces the way of their manifestation. The move-
ment that inhabits discourse is the same movement that inhabits world; it is its set-
ting forth, its original blossoming, its genesis and its growth. Logos [the rational
principle] is physis [nature as originating power]. But physis is itself ousia [essence];
it is that which brings things into presence; it is generative of the universal parou-
sia. As such it indicates how things are called into the partaking of presence, into
the confines of being. Logos is thus also ontology. (1972e, 65)

In Ladrière’s understanding the rational principle logos, which is
charged with meaning, is autonomous and possesses its own exigence to
realize itself by conforming to its own law. To achieve this end, it oper-
ates both in human formal reasoning in the reconstitution process and
in the manifestation of physical reality so that what is manifested may
be comprehended (1977, 104–8). In formal reasoning, therefore, the
rational principle prescribes what is possible or admissible in the real
appearance of things (1981, 74, 76). The production of things takes
place when all the prescribed conditions are satisfied or, in other words,
“if determinations reach the point of saturation” (1970b, 100).

As such, the stability of things is only relative and temporary, subject
to the opposing movements of degeneration and the emergence of
organization. Ladrière quotes Alfred North Whitehead: “Nature is ‘pa-
ssage’” (1988, 254–55). It is “passage” in the sense that things appear
and disappear in the field of manifestation. The field “bears within it (as
a field) the becoming, the blossoming, of the thing,” and “the full pres-
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ence of the thing consists in the achievement of the act of appearing”
(1970b, 96). As each thing appears, “the entire field in which it appears
is assembled and produced while this field produces the thing” (1970b,
96–97). The dynamic relation between form and matter leads Ladrière
to conclude this: “Form is not, in any case, frozen; the concrete is not
closedness. Perhaps between things and forms, between names and fig-
ures, between signs and substance, there is increasing traffic, a universal
and permanent symbolization”5 (1972e, 65). The existence of things in
themselves is certain, though they are neither permanent entities nor
objects of knowledge. Their reality is only guaranteed by the prescrip-
tion of the rational principle, and meaning engenders when the mani-
festation process is reconstituted.

2. A PROPOSAL OF THE FOUNDATIONAL STRUCTURE: PROCES-
SIONAL MODEL. This logical structure inherent in reality, which gives
the world its texture, is what Ladrière calls “the a priori” (1972a, 180). It
is the condition that transcends the thing itself yet controls the ontologi-
cal unfolding of things as we see them. Ladrière compares this unfolding
to an emanating procession whereby the multiplicity of the physical
world is generated through successive layers of constitutive conditions.
The layers are the highest level, general ontological categories; the middle
level, formal ontology; and the lowest level, individuating principles. So
the procession goes from metaphysics through mathematics to physics,
and by means of the individuating principles the concrete reality in mul-
tiplicity may be comprehended. Conversely, in retracing the movement
through reconstitution, we may consider that “the reality of mathematics
is that of an ontological a priori” at the formal level (1966, 236–38).

3. THE PROSPECT OF SHOWING THE CORRECTNESS OF PROCES-
SION. Ladrière believes that it may become possible to show the model
of procession to be the correct hypothesis if one can demonstrate that
mathematics is the preconditioning a priori for the physical constitution
of the world. This demonstration requires the showing of correspon-
dence between the whole of mathematical reality and the whole of the
physical reality. But at the present stage of development, the relationship
of mathematics to physical reality is still underdetermined. It is only at
the limit of the movement toward “totalization,” or attainment of the to-
tal virtual system, that the correspondence may be realizable (1966, 239;
1957, 410, 437). Because only separate partial formal systems are now
available for the study of physics, we can at best build particular physical
laws to comprehend our universe in a piecemeal manner. In a certain
sense, partial knowledge is a “limit-idea.” “The true reason for the intel-
ligibility possessed by particular laws is due not to their applicability to
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experience but to their conformity to a universal principle” (1970b, 76).
But how possible it is for us to attain the total mathematical reality, the

absolute formal field? With operations used in formalism, the content
attained is bound to be partial because such operations are by nature ana-
lytic and can deal with only one thing at a time. At present, instead of
having one single unified formal system, we have a multiplicity of partial
systems that can move between one another. This possibility of mutual
exchange between partial systems implies that they are of the same order
of reality. The total system represented in formal construction is not
forthcoming and perhaps not possible, yet that total system of unlimited
possibilities is being approached by each partial system.

But what could approaching totalization possibly lead to? According
to Ladrière’s speculation, the more progress toward the total virtual sys-
tem, the closer the approach comes to the concrete, because totalization
means concretization. If a total system could be constructed, “it would
effect simultaneously all conceivable connexions” (1972c, 127). The
absolute formal field that may still be a virtuality to us will become
actual and “enter so to speak into a visible body of effectuation” (1972c,
128). Moreover, if a total system could be constructed, it would mean
reaching “the fullness of logical existence,” a condition under which the
physical realization is close at hand (1972c, 128). Ladrière does not
mean to say that formal reasoning at the limit of totalization can make
things appear physically, but he maintains that we will be illumined to
see the full picture of all the logical conditioning connections that lead
to physical manifestation.6

4. THE DYNAMICS OF PHYSICAL MANIFESTATION. As regards the
movement of physical manifestation, the thing is “passage” in the sense
that it is produced from the entire field of manifestation and is taken
back into that “totality” (1970b, 97). It is the differentiating movement
from unity to multiplicity, however, that brings things into being.
Through such a movement, all the differentiated entities are again uni-
fied under the influence of the unity. Thus, the differentiating movement
is at the same time a unifying movement. Yet, in going from one pole to
another, these movements must pass through the medium of structural
relation (or the a priori), which can be further classified as “spacelike”
with reference to “conditions of stability, configurations, nature as archi-
tecture” and “timelike” regarding “connection, process, nature as melody”
(1970b, 97). Through structural relation, the original undifferentiated
unity may “be produced as an organized unity,” which is nature itself,
and this organized unity is the synthesis between the generating origin
and the things generated (1970b, 98).

However, in the coming and going between the original unity and
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the organized unity through structural relation, there is a stabilizing fac-
tor—each real thing that appears. By means of action, the thing must
“sum up in itself the entire universe, the system of all things” (1970b,
98). Nevertheless, each particular thing on its own is only a “provisional
concretization,” and the “true concretization” involves nature as a whole
in unending self-production. Hence, the thing is never stable and can
only be “a becoming” in its universal action (1970b, 99).

CLOSING THOUGHTS

The existence of a suprarational ground inferred by Peacocke has
found substantiation in our investigation into how intelligibility is
possible. Ladrière’s contribution presented in this paper centers on the
idea that intelligibility lies in the act of reconstituting reality. (The re-
constituted reality, identified as the “third world,” is distinguished
from the mental world and the physical world [1977, 106]). Both the
act of reconstituting and the process of physical manifestation are gov-
erned by the same rational principle, the common suprarational
ground of intelligibility, which has its own objective reality. On the
one hand, Ladrière’s view contrasts with Emmanuel Kant’s subjectiv-
ism, which holds that the logical structure immanent in the physical
phenomena is nothing but a creation of the human mind (1986, 40).
This explains the congruence between human reasoning and nature, at
the cost of reducing all reality to the realm of the knowing subject. If
the human mind is taken to be the ground of intelligibility, what is
known or can be known loses its objective character, and no court of
appeal for truth exists. On the other hand, Ladrière opposes the neo-
positivists’ empiricism, which claims that nothing more can be known
except what can be perceived (1972b, 81), thereby reducing the locus
of intelligibility to sense data. If one were to adhere to strict empiri-
cism, there would be little progress in scientific research. This is be-
cause a human being lacks the power to see beyond the immediate and
derive intelligible meaning out of naked sense data.

Peacocke has further identified this suprarational ground with
“God” (Peacocke 1994, 643), but Ladrière is more sensitive to the dif-
ferent kinds of questioning represented by the disciplines of philoso-
phy and cosmology, and hence affirms that the gap between the
rational principle and God as a person Diety is still large (1984b,
129). Nevertheless, by addressing the issue of intelligibility, we have
contributed to the laying of the philosophical groundwork, based on
which further questions at the cosmological and theological levels can
be asked concerning the relation between God and the suprarational
ground (cf. 1972a, 172–74).
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NOTES

1. A classic example is Einstein’s general theory of relativity, which was constructed mathe-
matically in 1916, decades before it was first confirmed experimentally by a Hungarian physicist,
R. von Eötvös, and later in the 1960s, by an American physicist, Robert Dicke (Bergmann 1977,
585–86).

2. Ladrière recounts past unsuccessful attempts to consolidate the theoretical grounding of
set theory and concludes that the search for such a foundation of set theory is still open (1970a,
450–76).

3. In fact, the assumption of emergence throws an acausal factor into the picture, but sponta-
neity is part of the physical world as is possibly the case with quantum mechanics (1972a, 183,
185).

4. What this result could mean is that fewer parameters need to be determined empirically in
a highly integrated theory, for the information carried by those parameters may be obtained from
the newly integrated aspects.

5. According to the context of the French text, the meaning of symbolization probably should
be understood etymologically as a “throwing together.”

6. To Ladrière, for the world to become visible is for it “to enter the visible domain, not in the
sense of the visual field, but in the sense of an illuminated domain within which vision is possi-
ble” (1972a, 176).
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