COSMOLOGICAL SINGULARITY AND THE CREATION
OF THE UNIVERSE

by Michael Heller

Abstract. One of the most important and most frequently dis-
cussed theological problems related to cosmology is the creation prob-
lem. Unfortunately, it is usually considered in a context of a rather
simplistic understanding of the initial singularity (often referred to as
the Big Bang). This review of the initial singularity problem consid-
ers its evolution in twentieth-century cosmology and develops meth-
odological rules of its theological (and philosophical) interpretations.
The recent work on the “noncommutative structure of singularities”
suggests that on the fundamental level (below the PlancK’s scale) the
concepts of space, time, and localization are meaningless and that
there is no distinction between singular and nonsingular states of the
universe. In spite of the fact that at this level there is no time, one
can meaningfully speak about dynamics, albeit in a generalized sense.
Space, time, and singularities appear only in the transition process to
the macroscopic physics. This idea, explored here in more detail,
clearly favors an atemporal understanding of creation.
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larities; temporality.

It would be difficult to find a popular book or an article on cosmology in
which the author says nothing about the Big Bang and the creation of the
universe. It would be even harder to find a book or an article in which this
problem was dealt with in a responsible manner from the point of view of
both science and theology. The goal of this article is to improve the statis-
tics in this respect. However, this purpose cannot be achieved by repeating
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commonplace statements about the Big Bang as being a point with an
infinite matter density at which the universe and time began. One must
go a little bit deeper into a mathematical definition of the initial singularity
(a geometric counterpart of the Big Bang) and the conditions of its exist-
ence, for only then can one correctly decipher its physical content and its
philosophical (or theological) significance. We shall examine this question
by starting with the first appearance of the singularity problem in twenti-
eth-century cosmology and ending with the most recent results concern-
ing the geometric nature of singularities.

EARLY DISPUTES

It is interesting to notice that the cosmological singularity started making
trouble in our science of the universe even before it had been formally
discovered. Its appearance was acknowledged not earlier than in the work
by Alexander A. Friedman in 1922. It should be noted, however, that in
his first paper on cosmology in 1917, Albert Einstein had met with the
same difficulty that is responsible for the singular behavior of the universe
in certain of its states. The problem at stake is that of gravitational insta-
bility, the same problem with which Isaac Newton had to cope when he
pondered why “Matter evenly scattered through a finite Space would not
convene in the midst” (Cohen 1958, 292). He gave as his opinion

that there should be a central Particle, so accurately placed in the middle, as to be
always equally attracted on all Sides, and thereby continue without Motion, seems
to be a Supposition fully as hard as to make the sharpest Needle stand upright on
its Point upon a Looking-Glass. And if the question is asked with respect to an
infinite universe it becomes even harder: For I reckon this is as hard as to make not
one Needle only, but an infinite number of them (so many as there are Particles in
an infinite Space) stand accurately poised upon their Points. (Cohen 1958, 292)

Initially Einstein himself (and many other cosmologists after him) be-
lieved that the appearances of singularities in the cosmological models con-
sidered at that time were by-products of the over-strong simplifying
assumptions that were required to construct these models. The suspicion
was that the so-called cosmological principle (the assumption of spatial
homogeneity and isotropy of the universe) was responsible. The under-
standing that this is not the case and that the real cause lies in gravitational
instability emerged rather laboriously. An important hint was given by
Georges Lemaitre (1933), who demonstrated that in a certain class of aniso-
tropic world models the tendency toward the appearance of singularities is
even greater than in isotropic ones; but the decisive step was made much
later by Roger Penrose and Stephen W. Hawking (and some others), who
proved several theorems on the existence of singularities (see Hawking and
Ellis 1973). It turned out that to remove singularities from the theory of
gravitation is “as hard as to make an infinite number of Needles stand
accurately poised upon their Points” (Cohen 1958, 292). However, this
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does not mean that this cannot be done, as we shall see.

Long before this stage of the dispute ended, heated philosophical and
even theological polemics had begun. Lemaitre (1958) tells us that when
he was discussing with Einstein the primeval-atom hypothesis, Einstein’s
reaction was: Non, pas cela; cela suggere trop la création (No, not this; this
too much suggests the creation). From the very beginning philosophical
views interfered with doing cosmology. Many authors shared Einstein’s
reluctance to accept any kind of beginning of the universe. Some people
shared his views for good methodological reasons, but some others never
tried to hide their antireligious attitude. For instance, in William Bonnor’s
view, theologians had long awaited such an occasion as a superdense state
in the beginning of the universe, for now they could claim that the biblical
account of creation is right, and bishop James Ussher was mistaken by
only a few years (Bonnor 1964, 134).

In these discussions arguments taken from science were mixed with those
of purely theological origin. For instance, Arthur E. Milne argued that

the creation of the universe demanded creation at a point-singularity. For the
creation by God of an extended universe would require an impossibility, the im-
possibility of the fixation of simultaneity in the void—impossibility, that is, to a
rational God. The paradox follows that the Deity himself, though in principle all-
powerful, is yet limited by his very rationality. (Milne 1952, 157)

The strategy of this argumentation is rather transparent. We have a scien-
tific result (the point singularity) and a theological idea of God (as a ratio-
nal Being), and we make a post hoc deduction of this scientific result from
this theological idea (God’s rationality implies the point singularity). Apart
from a methodological incoherence of such strategies, at least two implicit
dangers are always involved in them: First, the results of science are of their
very nature provisional—and in cosmology even more so than in other
physical disciplines because of the high degree of extrapolation always
present in cosmological theories. In fact, later on it emerged, as we shall
see, that classical singularities are not parts or elements of space-time, and
that consequently such concepts as that of “point” (in its usual meaning)
are not applicable to them. Second, any “deduction” of a scientific result
from a theological premise can be only apparent (for instance, one can
overlook some other important premises); and, if the idea of God as a
rational Being is true, the deduction in Milne’s argumentation is indeed
only apparent, inasmuch as the point-singularity concept, being meaning-
less, is not a scientific result.

As we look at these early polemics from the present perspective, we can
quite clearly see that they were based, perhaps with a very few exceptions,
on two often tacit presuppositions, one purely scientific and another purely
theological. The scientific presupposition asserted that singularities (in
particular the initial singularity) can be removed from cosmological mod-
els. Even those who claimed that the initial singularity is a permanent
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element of our image of the universe (among them Milne and Lemaitre)
were unable to prove this claim. The theological presupposition consisted
in identifying the beginning of the universe with its creation: if the uni-
verse had a beginning, it had to be created by God; and vice versa, if it was
created by God, it had a beginning. This presupposition was made by
both defenders and opponents of the theological concept of Creation. How-
ever, one should distinguish the theological meaning of creation from other
meanings, as when this term is used by cosmologists as a synonym for
physical origin or even for initial singularity. The confusion of these mean-
ings and the linguistic carelessness of many cosmologists significantly con-
tributed to various misunderstandings. For instance, how is one to under-
stand the following statements made by Jayant Narlikar:

Atan epoch, which we may denote by t=0, the Universe explodes into existence. . . .
The epoch t=0 is taken as the event of “creation.” Prior to this there existed no
Universe, no physical laws. Everything suddenly appeared at t=0. (Narlikar 1977,
125)

It is important not to overlook the quotation marks around “creation.”
To many theologians and philosophers who are not experts in physics, this
could appear to be a true theological account of creation (“the Universe
explodes into existence™). Strictly speaking, however, the issue here is the
technical problem of the violation of the principle of energy conservation,
as could be guessed from the following:

The most fundamental question in cosmology is, “Where did the matter we see
around us originate in the first place?” This point has never been dealt with in big-
bang cosmologies in which, at t=0, there occurs sudden and fantastic violation of
the law of conservation of matter and energy. After t=0 there is no such violation.

(Narlikar 1977, 136-37)

However, the suspicion arises that confusions of meanings, like the one
above, could be intended, at least to some extent and at least by some
authors. Science sells better if it is shown to conquer realms traditionally
controlled by theology.

The first of the foregoing presuppositions, that singularities can be re-
moved from cosmological models, was later made the subject matter of
intensive studies. The quite unexpected results significantly changed the
atmosphere of the Creation dispute. Unfortunately, the second presuppo-
sition, that beginning = creation, is still “on the market” and continues to
cause confusion in discussions of the philosophical and theological implica-
tions of cosmology. These problems are explored in the subsequent sections.

CLASSICAL BEGINNING

An important breakthrough in discussions about the beginning of the uni-
verse took place in the sixties, when the singularity theorems were proved.
They are of purely mathematical character but have a natural physical in-
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terpretation. First, one defines a model of space-time. Its intended goal is
to describe space-times encountered in the special and general theories of
relativity; but from the mathematical point of view, such a model refers to
any space considered in differential geometry, provided it satisfies the re-
quired conditions. On such a space one imposes further conditions, which
geometrically mimic properties of a gravitational field. Then, a long chain
of mathematical deductions shows that the foregoing sets of conditions
(together with another geometric condition, which can be interpreted as
saying that the considered space-time is singularity-free) inevitably lead to
a contradiction.

The key point is how to define singularity and what is meant by saying
that a space-time is singularity-free. This is a big issue in relativistic phys-
ics, and, as we shall see, it leads to sophisticated mathematical problems.
Happily enough, what is needed to prove the singularity theorems is not
the true singularity definition but only a working criterion for a given
space-time to be free of singularities. What becomes apparent is that such
a criterion is provided by the so-called geodesic completeness of space-
time (in the null and timelike sense). Geodesics are “the straightest curves”
in a given space-time." In the theory of relativity, null and timelike geode-
sics describe the free motion of photons and massive particles (or observ-
ers), respectively. The geometric concept of geodesic completeness
represents the situation in which such motions could be indefinitely con-
tinued (in both time directions). This means, of course, that the history of
any photon or particle will never cease to happen and, consequently, that
space-time has no edges or singularities.

This is a good working criterion for a given space-time’s being singular-
ity free without the necessity of knowing the physical nature of singularities.
However, by reversing the former reasoning, we could guess something
about singularities themselves. If a (null or timelike) geodesic cannot be
prolonged,? a certain history of a photon or particle must break down, and
this occurs exactly because of the singularity (quite often it happens that
not only one, but all histories, break down at a singularity). If a history
cannot be prolonged, it ceases to happen; and what does it mean that the
history of a particle ceases to happen? It means that this particle emerges
out of nothingness, or disappears into nothingness. For instance, at the
initial singularity in the Friedman world model, all histories of photons
and particles emerge from nothingness, in this sense. This concept strongly
resembles the theological one of creation out of nothing (creatio ex nihilo).
In such a context the last paragraph of the well-known monograph on the
singularity theorems is hardly surprising:

The creation of the Universe out of nothing has been argued, indecisively, from
early times; see for example Kant’s first Antinomy of Pure Reason and comments
on it. ... The results we have obtained support the idea that the universe began a
finite time ago. However, the actual point of creation, the singularity, is outside

the scope of presently known laws of physics. (Hawking and Ellis 1973, 364)
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However, we should not forget that conclusions of this sort are always
model dependent. The model in question is provided by the geometric
model of space-time, mathematical conditions of the singularity theorems,
and their physical interpretation. The latter is given by the theory of gen-
eral relativity which, as a classical theory, does not take into account quan-
tum gravity effects. Because there are strong reasons to believe that these
effects play the decisive role in the early, superdense states of the universe,
the problem of the existence of the initial singularity crucially depends on
the future theory of quantum gravity. This conclusion does not come
from any trustworthy theory but rather from a combination of the present
classical theory of gravity and various methods of quantizing physical fields.
Based on such knowledge, we conclude that when the energy density ap-
proaches that of the Planck threshold® quantum gravity effects become
dominant. The singularity theorems are proven mathematical theorems;
as such, they will always remain true. We can only hope that the future
theory of quantum gravity will violate one of the conditions appearing in
these theorems and in this way free cosmology from singularities (the so-
called energy conditions are the most frequent candidates for being bro-
ken down by quantum gravity effects). Taking all these issues into account,
it would be premature to claim that the singularity theorems prove the
beginning of the universe, let alone its creation.

Strong reasons also prevent one from identifying the initial singularity
with the “moment of creation.” The nothingness out of which the histo-
ries of particles or observers emerge has nothing in common with the “meta-
physical nonbeing” of philosophers and theologians. The singularity
theorems have been proven within the conceptual environment of the pre-
cisely defined model of space-time, and saying that some histories sud-
denly end at the final singularity only means that the curves representing
these histories have reached the edges of the model. It is true that, in the
case of the initial singularity, these histories emerge out of nothingness,
but it is nothingness from the point of view of the model. The nothingness,
in this sense, is only what the model says nothing about. What is outside
the model, the model itself does not specify.

This is the kind of interpretation I am calling the “exegesis of the math-
ematical structure” of a given physical theory (Heller 1993). It is a mini-
mum interpretation closely following the mathematical formulae
constituting the body of the theory under interpretation. Everybody who
understands these formulae and their functioning in the given theory must
accept this interpretation. Of course, one may superimpose any interpre-
tative comments on this theory as long as they do not contradict its math-
ematical structure. However, strictly speaking, the theory itself remains
neutral with respect to such comments. One may even superimpose on
the same theory some other comments, which contradict the previous ones
(provided they do not contradict the mathematical structure of the theory).
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For instance, in our case, one can claim that the emergence of all histories
of particles and observers from the initial singularity in the Friedman world
model should be understood as the creation of the universe by God from
nothing (ex nibilo), or alternatively that the universe lasted from minus
temporal infinity and that the initial singularity in the Friedman model is
but a geometrical expression of the fact that all information from the pre-
vious cycle of the world’s evolution has been lost (the universe has forgot-
ten its presingularity past). Neither of these interpretative comments
contradicts the mathematical structure of the model, and any serious dis-
cussion between these two philosophies should look for support in depart-
ments of human speculation other than cosmology. The well-known
criticism by Adolf Griinbaum (1989; 1990) strikes at the theological doc-
trine of creation only if one forgets the above methodological analysis. Itis
not true, however, that the theologian as theologian has nothing to learn
about creation from modern cosmological theories. This problem is dis-
cussed in subsequent sections.

SPACE-TIME BOUNDARIES

For the time being let us set aside theological interpretations and stick to
the “exegesis of mathematical structures.” The singularity theorems are
not the last word in the problem of the beginning of the physical universe.
The major question concerning the nature of singularities remains open.

In the singularity theorems singularities are understood as “end points”
of curves representing histories of particles or photons. Can we be more
precise about that? The end point itself of such a curve is inaccessible for
our research, because precisely at this “point” our model breaks down.
However, we can use here a trick often used in geometry. Because a given
end point is determined by all curves that end at it, in all calculations we
can treat interchangeably the end point and all curves that end at it. Or,
simply, we can identify end points with such classes of curves. This means
that by investigating the geometry of such classes of curves we are, in fact,
investigating the set of end points; and this, of course, is done from inside
our model of space-time. The set of all end points, in this sense, forms
what is called the singular boundary of space-time.

In such a manner all singularities of a given space-time are represented
as points of its singular boundary. If there are no singularities, the space-
time has no singular boundary. In fact, the singularity theorems reveal
themselves as theorems concerning the existence of singular boundaries.
Notice, however, that although the boundary points of a given space-time
are defined from within, they do not belong to the space-time itself (they
do belong to the space-time boundary), and consequently it is meaningless
to speak about them as of points in the usual sense. In fact, they can have
a highly complicated structure which strongly depends on details of the
boundary construction.
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There are several known constructions of space-time boundaries. One
of the first belongs to Hawking (1966) and Robert Geroch (1968) and is
called g-boundary; g is here an abbreviation for “geodesic,” and it means
that in this boundary construction only the geodesic curves have been taken
into account. In general relativity, timelike and null geodesic curves repre-
sent histories of freely falling particles (or observers) and photons, respec-
tively.* The importance of the g-boundary of space-time stems from the
fact that in the singularity theorems only the completeness (or incom-
pleteness) of space-time with respect to geodesic curves is taken into ac-
count. Precisely this issue is the source of another interesting problem. In
the universe there can exist particles the histories of which are not geodesic
curves. For instance, a rocket moving with a bounded acceleration is a
perfectly physical body’ (although it is not “freely falling”), and the space-
times exist which are geodesically complete but incomplete with respect to
curves of bounded acceleration. To have a reasonable singularity definition, a
criterion concerning such curves should be included in the definition.

A space-time boundary construction satisfying this requirement was pro-
posed by Bernard Schmidt (1971). It is mathematically elegant and physi-
cally appealing. Schmidt does not consider directly space-time itself but
rather a larger space of all possible local reference frames that can be de-
fined in this space-time. This larger space is called a frame bundle (over
space-time). It is very much in the spirit of relativity theory for which
reference frames are “more real” than points in space-time. One can mean-
ingfully speak about curves in the frame-bundle space, and the standard
notion of length refers to them correctly. The boundary points of a given
space-time are defined in terms of classes of the frame-bundle curves hav-
ing finite lengths. The corresponding space-time boundary is called a bundle
boundary or, for short, b-boundary, of space-time; and it takes into account
both geodesics and other curves in space-time.

Shortly after its publication Schmidt’s b-boundary came to be viewed as
the best available description of singularities. It had, however, one serious
drawback: to compute b-boundaries of more interesting (nontrivial) space-
times effectively was extremely difficult. Only a few years later were B.
Bosshardt (1976) and R. A. Johnson (1977) able to say something more
concrete about the structure of the b-boundaries of such important cases
as the closed Friedman world model and the Schwarzschild solution (de-
scribing a symmetric black hole)—and their results proved disastrous. It
turned out that in both cases the corresponding b-boundary consisted of a
single point. This looks especially pathological in the case of the closed
Friedman universe, in which there are two singularities: the initial singu-
larity and the final singularity. In the b-boundary construction they coa-
lesce to a single point, that is, the beginning of the Friedman universe is
simultaneously its end. Moreover, in both the closed Friedman and the
Schwarzschild solutions, from the topological point of view the entire space-
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times together with their b-boundaries reduce to a single point.® Some-
thing is really going wrong.

There were many attempts to cure the situation but with no substantial
effect. (For more details see, for instance, Dodson 1978; 1980.) During
the next several years the beautiful, but now useless, b-boundary construc-
tion, almost forgotten, waited on library shelves for a better time.

MALICIOUS SINGULARITIES AND A DEMIURGE

The situation described in the preceding section suggests that perhaps overly
coarse tools were used to deal with a very subtle object. Is there any possi-
bility of finding a subtler tool? The standard way of dealing with spaces in
differential geometry is by means of local coordinate systems, but it has
been demonstrated by L. Koszul (1960) that one can equivalently develop
differential geometry in terms of functions defined on a considered space.
Later on, Geroch (1972) showed that this method also works, in principle,
when it is applied to space-times of general relativity. By using it we ob-
tain nothing essentially new (and this method is usually much harder than
the standard one), but it can be quite naturally generalized. With some
refinement of technology, functions can be defined on spaces that are not
necessarily smooth (in the traditional sense)’—that is, on spaces that con-
tain some sorts of singularities. The suitable geometric technology has
been elaborated, and the corresponding spaces are known under the name
of differential or structured spaces.®

Now it may be possible to reconstruct Schmidt’s b-boundary in terms
of structured spaces. The results of this procedure are encouraging. Milder
kinds of singularities can be fully analyzed if this new method is employed.
For instance, a space-time containing the so-called cone singularity (which
models an infinitely long one-dimensional “cosmic string”) can be regarded
as a structured space (the singularity is a part of this space), and effectively
studied with the help of the theory of these spaces. As far as stronger
singularities are concerned, such as the ones in the closed Friedman and
Schwarzschild solutions, the situation is much subtler. We recall that now
space-time is modeled by a family of functions defined on it, and to have
the full description of space-time this family must be sufficiently rich. In
the case of space-times with strong singularities, the family of functions
defining them contains only constant functions, far from enough for a
satisfactory model of space-time (with singularities). Constant functions,
in particular, do not distinguish points, because the value of such a func-
tion on each point is the same. This explains why the space-times of the
closed Friedman model and the Schwarzschild solution together with their
b-boundaries collapse to the single points. Singularities that produce such
pathologies have been called malicious singularities.

It is possible to say even more. Consider the closed Friedman world
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model. As long as one deals with its space-time without taking into ac-
count its two singularities (the initial and the final ones), a sufficiently rich
family of functions is defined on it,” and everything is as it should be. If,
however, one tries to “extend” these functions to the singular boundary, all
functions, with the exception of the constant ones, vanish, and everything
collapses to a single point.

The following interpretative comment illustrates the situation.'’ For
beings living inside the closed Friedman model, everything is all right. By
studying cosmology they can learn about the existence of the initial singu-
larity in their past, and they can predict the final singularity in their future.
Neither of these singularities is directly accessible to them; however, they
have learned about the singularities by collecting information from within
space-time in which they live. If they had directly “touched” one of the
singularities (tried to “extend” to them the corresponding family of func-
tions), space-time with singularities would immediately have been reduced
to a single point. Suppose further that the world under consideration has
been created by a Demiurge in the initial singularity. To create the world,
the Demiurge must “touch” the singularity (must deal only with constant
functions), and therefore for the Demiurge the beginning of the world is
simultaneously its end. Theologians always claimed that God is atemporal
and therefore everything happens instantaneously for God.

Remember, however, that such metaphoric interpretations are good only
as didactic tools illuminating some aspects of the model. The story is
evidently not yet finished; what we need are better tools to deal with the
malicious nature of strong singularities. For the time being, one could
summarize the situation by noting that although the method of structured
spaces has provided insight into the nature of the problem and explained
the source of difficulties in which the b-boundary construction is involved,
it is still not powerful enough to solve completely the problem of mali-
cious singularities.

POINTLESS SPACES

Happily enough, still one generalization of geometry is possible. It starts
with a simple step. Multiplication of functions has a simple property: the
order of functions in their product is irrelevant. Suppose two functions, f°
and g (say), are defined on a space X, and we want to multiply them. We
do this point by point. Let x be a point of X. First we compute f{x)—the
value of the function fat the point x. Then we compute g(x)—the value of
gatx. These two values, f{x) and g(x), are numbers. We multiply them in
the usual way and treat the result as the value of the product f-gat the point
x, as (fig)(x). We can express this rule in the short formula (fig)(x)=/(x)-g(x).
And we repeat the same for all points of the considered space X. In the
multiplication of numbers the order is irrelevant (7-3 = 3-7), and the same
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is true as far as multiplication of functions (defined above) is concerned.
We express this by saying that multiplication of functions is commutative
or that it satisfies the axiom of commutativizy.

If, in the theory of differential spaces, we rejected the axiom of commu-
tativity, we would obtain a new generalization of geometry, called noncom-
mutative geometry. The problem is, however, that the multiplication of
functions is always commutative (with the foregoing definition of multi-
plication); and to pass from commutative (that is, standard) geometry to
noncommutative geometry we must change from functions to some other
mathematical objects (such as matrices or operators), which are not multi-
plied “pointwise.” (This would lead back to commutativity.) In other
words, such objects are not permitted to “feel” points; and if we define a
space with the help of such mathematical objects, this space turns out to
be a pointless space, that is, a space in which the concept of point has no
meaning. In fact, noncommutative spaces are, in principle, purely global
constructs in which local notions (such as that of point and its neighbor-
hood) cannot even be defined.

It came as a surprise that in spite of this “strange” property, differential
geometry could be done in noncommutative spaces, albeit in a highly gen-
eralized sense. The seminal work of Alain Connes (1994) soon matured
into a new field of research in mathematics and mathematical physics (see,
for instance, Madore 1999).

Noncommutative geometry has two sources. One is evidently the stan-
dard differential geometry of which it is a vast generalization. It should be
remembered that the tendency toward generalizing concepts and methods
has always been a powerful driving force of mathematical progress. The
second source of noncommutative geometry is none other than quantum
mechanics. This fact might surprise an outsider, but it is well known to
every physicist that in this physical theory observable magnitudes are rep-
resented by mathematical objects called operators in a Hilbert space, which
multiply in a noncommutative way. In fact, the famous Heisenberg un-
certainty principles are but the consequence of this noncommutativity.
These properties of quantum mechanics were certainly an inspiration for
the creators of noncommutative geometry. However, the real connections
between noncommutative geometry and the mathematical structure of
quantum mechanics go further than that. Every noncommutative space
can be represented as a theory of operators in a Hilbert space. Roughly
speaking, this means that every noncommutative space can be described in
terms of some operators in a certain Hilbert space. One could even sus-
pect that the “strange behavior” met in quantum mechanics (such as
nonlocality’s manifesting itself in the Einstein-Podolsky-Rosen experiment)
is the consequence of this structural affinity of quantum mechanics with
noncommutative geometry (which from its very nature is nonlocal).

To formulate a mathematical problem correctly, very often one must
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define a space in which this problem unfolds. The structure of this space
does not depend on the mathematician’s will but is implied by the nature
of the problem. It happens quite often that the structure of the “space of
the problem” is highly sophisticated—sometimes even pathological (from
the point of view of standard geometrical methods). The aim of generaliz-
ing the usual (commutative) concept of space to the concept of noncom-
mutative space was to find a tool for dealing with such pathological spaces.
In fact, the new geometry efficiently deals even with such spaces with which
the standard geometrical methods are hopelessly ineffective.'!

As explained in the preceding sections, relativistic space-times with ma-
licious singularities (such as the Big Bang singularity in the closed Fried-
man world model) are, from the geometric point of view, highly pathological
spaces. Therefore, it seems natural to apply noncommutative methods to
their analysis.

NONCOMMUTATIVE STRUCTURE OF SINGULARITIES

Indeed, relativistic space-times with all kinds of singularities can be de-
scribed as noncommutative spaces. All major difficulties met so far in
their study disappear in the degree of generalization that leads to the very
concept of noncommutative space.'> As already shown, in this generaliza-
tion process local concepts, such as those of points and their neighbor-
hoods, become meaningless. In many situations they are replaced by the
concept of state, a global notion. Even within the commutative context, if
we speak about a state of a given system, we do not mean a “well localized”
part of it but rather a certain characteristic that refers to the system as a
whole. Our everyday language also conforms to this way of speaking. If,
for example, we speak about the state of an enterprise, we mean by that
certain of its global characteristics, such as the increasing production rate
or general income. The same intuitions are incorporated into the concept
of the state of a physical system.

If we change to the noncommutative description of a space-time with
singularities, we lose the possibility of distinguishing points and their neigh-
borhoods, but we can still meaningfully speak about states of the system.
Here, however, all states of the universe are on an equal footing; there is no
longer any distinction between singular and nonsingular states. Moreover,
each state can be described in terms of operators in a certain Hilbert space
in an analogous way, as is usually done in quantum mechanics.

With the use of this method, it was possible to prove several theorems
characterizing various types of singularities, including malicious singulari-
ties, which occur in relativistic cosmology and astrophysics (Heller and
Sasin 1999a). These theorems are important also because they disclose the
way the singularities originate. Aswe already know, in the noncommutative
regime the question of the existence of singularities is meaningless: we can
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speak only about the states of the universe, and there is no distinction
between singular and nonsingular states. However, when we change from
the noncommutative description of the universe to its usual (commuta-
tive) description, the ordinary space-time, with its points and neighbor-
hoods, emerges, and some states degenerate into singularities.

This opens a new conceptual possibility. We could speculate that
noncommutative geometry is not an artificial tool to use in coping with
classical singularities in general relativity, but it somehow reflects the struc-
ture of the quantum-gravity era. The fact that operators in a Hilbert space
(which are mathematical objects typical for quantum mechanics) enter the
very core of the noncommutative description of singularities could suggest
that singularities “know something” about quantum effects. The tempt-
ing hypothesis is that below the Planck threshold there is the quantum-
gravity era, which is modeled by a noncommutative geometry and,
consequently, is totally nonlocal. In this era there is no space and time in
their usual meaning. Only when the universe passes through the Planck
threshold does a “phase transition” to the commutative geometry occur,
and in this transition the standard space-time emerges together with its
singular boundary. In fact, such a scenario of the very early universe has
been proposed (Heller, Sasin, and Lambert 1997; Heller and Sasin 1998;
1999b).

One may ask, Will the future theory of quantum gravity remove the
initial singularity from our image of the universe? Usually, either a yes or
a no answer is given to this question, and the two are supposed to be mu-
tually exclusive. In light of the proposed scenario, a third possibility should
be taken into account: The Planck era is atemporal and aspatial, and the
foregoing question, as referred to this era, becomes meaningless. From the
point of view of noncommutative geometry, everything is regular, although
drastically different from what we usually meet in space-time. As already
shown, the singularities are formed in the process of the transition through
the Planck threshold when space-time emerges out of noncommutative
geometry. This process could also be explained in the following way.

Usually, we think of the Planck era as being hidden in the prehistory of
the universe when its typical scale was of the order of 10%° cm. However,
the Planck era could be found even now if we were to delve deeper and
deeper into the strata of the world’s structure until we reached the thresh-
old length of 10%° cm. After crossing this threshold, we would find our-
selves in the Planck “stratum” with its noncommutative regime. On this
fundamental level, below the Planck scale, all states are on an equal foot-
ing; there is no distinction between singular states and nonsingular states.
Only the macroscopic observer, situated in space-time (and thus well be-
yond the Planck threshold), can say that his universe started from the ini-
tial singularity in its finite past and possibly will meet the final singularity
in its finite future.
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METHODOLOGICAL CONCLUSIONS

Having reviewed the story of the singularity problem in twentieth-century
cosmology, including some of its interpretations as the beginning of the
universe, we can now draw out of it a few methodological conclusions
referring to the relationship between theology and natural theology (or
philosophy, in general), from one part, and scientific theories and models,
from the other. Here and in the rest of the present section, by interpreta-
tion I do not mean the “exegesis of the mathematical structure” of a given
theory or model but rather an interpretation that is “superimposed” on
this theory or model.

1. Aswe have seen, it is usually the latest scientific theory or model that
gives rise to theological or philosophical interpretations, and very
often these interpretations are announced with such conviction as to
suggest that the theories or models are indubitable results of science.
For instance, after proving several theorems about the existence of
classical singularities, Hawking (with his coauthor George Ellis) ex-
pressed the view that these theorems support “the idea that the uni-
verse began a finite time ago.” Later on, when Hawking (with his
colleague Jim Hartle) produced the now well-known model of the
quantum origin of the universe, he switched to the interpretation
that is best encapsulated in the following quotation: “So long as the
universe had a beginning, we could suppose it had a creator. But if
the universe is really completely self-contained, having no boundary
or edge, it would have neither beginning nor end: it would simply
be. What place, then, for a creator?” (Hawking 1988, 140-41)

2. One could do theology or natural theology without any contact with
scientific theories or models, and in fact many theologians and phi-
losophers prefer this way of pursuing their disciplines. However, in
such a case, there is danger that instead of scientific theories or mod-
els, some pseudoscientific ideas or outdated concepts will serve as a
background for theological or philosophical speculations. The point
is that neither theology nor philosophy can be studied without a
“cultural environment” of a given epoch, and a general image of the
world constitutes a vital element of this environment. If the image
of the world is not taken (critically) from the sciences, it will cer-
tainly infiltrate theological or philosophical speculations from vari-
ous, intellectually suspect sources of human imagination.

3. In many theological or philosophical interpretations of cosmological
theories or models, both theologians and cosmologists (especially the
latter) often present the image of God’s creating the world and play-
ing with the laws of physics, for instance, by throwing dice in order
to decide which model of the universe should be brought into exist-
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ence. Incidentally, very often in such situations, the laws of physics
seem to be exempt from God’s omnipotence; in any case God is sup-
posed to be constrained by the laws of probability and statistics. Some-
times this picture of the world plays the role of a metaphor or a
heuristic tool in some abstract analyses. If such an image of the Cre-
ator is taken more seriously, one can hardly recognize the God of
theology or Judaco-Christian belief whose functions can by no means
be reduced to those connected with “manufacturing” the world. It
seems that such images of the Creator are laden more with the deistic
concept of Deity than with the Judaeo-Christian idea of God. This
is why in such contexts I prefer to speak of a Demiurge rather than of
the authentic God. However, this does not mean that the theologian
has no lesson about God to learn from scientific theories. Such theo-
ries can disclose some unexpected “ways of existing” (for example,
the atemporal character of a noncommutative regime), which, by
analogy, could be used in theological speculations about God.

A mathematical model could be of some importance for theological
or philosophical analyses even if it is not yet empirically verified and
even if it will never be. Any mathematical model, provided it is
correctly constructed, shows that the set of assumptions upon which
it is based is not contradictory, and as such it can either falsify or
corroborate some philosophical idea. For example, our noncommu-
tative model unifying general relativity and quantum mechanics tells
us something philosophically interesting, even if it will never find
any empirical support. Its message is that existence in space and
time is not the necessary prerequisite for the unfolding of physics. In
particular, this model falsifies the doctrine, common among philoso-
phers, that existence in time is the condition sine qua non for the
possibility of any change and dynamics. Change and dynamics in a
generalized sense, however, are possible even in the absence of local
concepts such as that of point or time instant (see the next section).

One should never forget about the temporary and transitory charac-
ter of all physical theories and models. Even if some of them have
successfully undergone the confrontation process with empirical data,
they always can become a “special case” of a future more-general theory
or of a model. The new conceptual environment could make their
present philosophical or theological interpretation no longer attrac-
tive, or even highly artificial.

Scientific theories or models are per se neutral with respect to theo-
logical or philosophical interpretations. They can be interpreted in
various ways as long as these interpretations do not contradict their
mathematical structure. This does not mean that all such interpreta-
tions are on an equal footing, only that they cannot be refuted by
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arguments taken from these theories or models alone (since we sup-
pose that these interpretations are not contradictory with their math-
ematical structures). Theological or philosophical interpretations of
scientific theories or models can, of course, critically compete with
each other. Popper’s “criterion of disputability” clearly applies to
them: any rational interpretation should be open for discussion and
criticism by its rivals.

THEOLOGICAL AND PHILOSOPHICAL CONCLUSIONS

Having in mind all of these methodological warnings, we can finally ask
about a theological (and philosophical) lesson to be learned from the sin-
gularity problem as it evolved in twentieth-century cosmology.

1.

It has built a strong case against the Newtonian concept of creation
(the idea of an absolute space and an absolute time existing “from
forever,” a kind of sensoria Dei) and of God’s creating energy and
matter at certain places of the absolute space and at the determined
instant of the absolute time. Even classical singularities could hardly
be reconciled with such an idea of creation. At classical singularities
space-time breaks down, and the Newtonian concept of creation could
be saved only by claiming that classical singularities are but an arti-
fact of the method rather than the authentic element of the theory.
Such a possibility, however, is practically excluded by the theorems
about the existence of singularities.

The modern theologian should consider the possibility of going back
to the traditional doctrine that the creation of the universe is an atem-
poral (and aspatial) act. Starting from the second half of the nine-
teenth century, some physical theories (thermodynamics, statistical
mechanics, certain data from the theory of elementary particles) sug-
gested that time is essentially a macroscopic phenomenon connected
with statistical properties of a great number of physical individuals
(particles); and many contemporary quantum-gravity proposals and
models of the very early universe describe the Planck era as timeless
and spaceless. The most radical in this respect seems to be the
noncommutative model, described in the previous sections, in which
all local concepts are excluded by the very nature of noncommutative
geometry. It would be inconsistent to regard creation as the process
immersed in time while simultaneously asserting that the beginnings
of the universe are atemporal.

Some theologians and philosophers (especially those of the White-
headian school) claim that the existence “in transient time” is an
ontological necessity. The fact that atemporal mathematical models
of the physical world (in its Planck era) have been constructed falsi-
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fies this claim. The main argument of these theologians and philoso-
phers that a timeless God would be a static being with no possibility
of acting, is erroneous. It is interesting to look in this respect at the
noncommutative model of the Planck era. In physics we usually
describe motion in terms of vector quantities. For instance, the ve-
locity of a moving point is a tangent vector to the curve describing
the trajectory of this point. The curve is parametrized by a time
parameter; and to represent the velocity of the moving point at a
given time instant, we choose the tangent vector to this curve at the
point corresponding to this time instant. In physical models based
on a noncommutative geometry there are no points and time in-
stants and, consequently, no vectors tangent at a given point. All of
these concepts are local, and as such they have no counterparts in the
noncommutative setting. However, a standard (commutative) dy-
namical system (for instance, a body in motion) can be described in
terms of vector fields; and vector field, being a global concept, has its
noncommutative generalization, called the derivation of a noncom-
mutative algebra. We cannot go into detail here, but it is enough to
remember that vector fields on the usual (commutative) space are
also derivations of a certain algebra (the algebra of smooth functions
on this space). One can meaningfully speak of a noncommutative
dynamics (without reference to local concepts such as that of point
or time instant) provided that one describes noncommutative dy-
namics in terms of derivations of the corresponding algebra. There-
fore, a generalized dynamics is possible even in the absence of the
usual notion of time. Notice that this noncommutative dynamics is
not the usual dynamics simply transferred to a new conceptual envi-
ronment but rather dynamics in the truly generalized sense. One of
the essential features of this generalization consists in replacing all
local elements with their global counterparts (if they exist)."

As always in similar situations in physics, the correspondence with
previous theories is important. This is the case as far as the temporal
properties of our model are concerned. It can be shown (Heller and
Sasin 1998) that, as we cross the Planck threshold, first some tempo-
ral order appears, and only then does space-time emerge, eventually
with its singular boundary (depending on the model).

The latter property discloses a certain relativity of the concept of the
beginning of the universe. If we regard the initial singularity as a
physical counterpart of the theological notion of the beginning of
the universe, we must say that from the perspective of the macro-
scopic observer the universe had its beginning a finite number of
years ago; but from the perspective of the fundamental level (suppos-
ing it is essentially noncommutative), the very concept of the begin-
ning is meaningless. In the light of this result, it could be interesting
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to go back to another traditional doctrine, strongly defended by Saint
Thomas Aquinas, that the beginning of the universe and the creation
of the universe are two completely distinct concepts. Because the
creation of the universe is but a dependence of the universe in its
existence on the Prime Cause, one can think, without any danger of
contradiction, about the created universe as existing from minus time
infinity. The dependence in existence does not require the initiation
of existence (see Baldner and Carroll 1997).

I emphasize again that the noncommutative model does not prove
or imply this traditional doctrine concerning the beginning and cre-
ation; it only shows its logical consistency.

TIMELESSNESS AND TIME

This final section explores, as a corollary of the foregoing analyses, the
traditional doctrine of the relationship between the temporal existence of
the universe and God’s eternity, and its consequences for our understand-
ing of creation. To this end I cite the recent essay by Ernan McMullin
(1997) in which this author goes back to the traditional doctrine on time
and eternity in order to cope with another important problem—that of
purpose and contingency in the evolutionary process.

In the Platonic myth of creation, a Demiurge transformed indepen-
dently existing chaotic stuff into the ordered Cosmos. In Aristotle’s phys-
ics the world always existed and needed only to be put into motion by the
First Mover. Saint Augustine saw God in a totally different way, namely as
a “Creator in the fullest sense, a Being from whom the existence of all
things derives” (McMullin 1997, 104). Such a being must be above all
constraints, and it cannot be denied that existence in time is one of the
most far-reaching constraints. It limits one’s existence to the transitory
“now” surrounded by two kinds of nothingness: the nothingness of all
those things that formerly existed but do not now exist and the nothing-
ness of all those things that do not yet exist. Perhaps it is even immersed
into the third kind of nothingness—that of all those things that could
have existed but never will.

Therefore, God should be regarded as being “outside’ time created,
though the metaphor is an imperfect one. Calling God ‘eternal’ is not a
way of saying that God is without beginning or end, like Aristotle’s uni-
verse. ‘Eternal’ does not mean unending duration; it means that temporal
notions simply do not apply to the Creator as Creator” (McMullin 1997,
105). The objection that this would make God a “static,” devoid of all
dynamics, was neutralized by the famous Boetius “definition” of ezernizy.
His formulation, “Eternity is the whole, simultaneous and perfect posses-
sion of boundless life” (quoted after McMullin 1997, 105), emphasizes the
abundant activity of the perfect and unconstrained life. Accordingly, one
should understand the act of creation:
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Time is a condition of the creature, a sign of dependence. It is created with the
creature. . . . The act of creation is a single one, in which what is past, present or
future from the perspective of the creature issues as a single whole from the Cre-
ator. . . . Creation continues at every moment, and each moment has the same

relation of dependency on the Creator. (McMullin 1997, 105)

Such an understanding of God’s eternity and creation has further conse-
quences for many theological problems, including the problems of design
and chance. If God exists outside time and space,

God knows the past and the future of each creature, not by memory or by foretell-
ing . . . as another creature might, but in the same direct way that God knows the
creature’s present. . . . Terms like “plan” and “purpose” obviously shift meaning
when the element of time is absent. For God to plan is for the outcome to occur.
There is no interval between decision and completion. (1997, 105-6)

In such a perspective, the concepts of chance and necessity also “shift their
meanings.” They are but two aspects of the same atemporal and totally
global activity. God knows the outcomes of laws and chance not by calcu-
lating from the initial conditions but in the same direct way as God knows
everything. What for us is a chance, for God is a detail of the picture that
is simply present.

Such an approach solves so many theological questions that it ought
not to be hastily dismissed (and, as we have seen, it is in consonance with
contemporary trends in theoretical physics). Its unpopularity among some
theologians may well stem from the fact that this approach strongly em-
phasizes the transcendence of God, whereas nowadays we prefer speaking
about God’s immanence. However, we should not forget that in Saint
Augustine’s teaching, God “is also immanent in every existent at every
moment, sustaining it in being” (McMullin 1997, 105). Here again the
noncommutative model of the atemporal Planck’s era might be of some
help to our imagination: macroscopic physics is only the result of some
“averaging” of what happens on the noncommutative, fundamental level.
Time is but an epiphenomenon of timeless existence.

NOTES

1. Every straight line in the Euclidean space is a geodesic. For the precise definition see any
textbook on differential geometry.

2. Notice that the usual concept of length has no invariant meaning (the meaning indepen-
dent of a coordinate system) in relativity theory; the term prolongation should here be understood
in the precise technical meaning,.

3. The Planck threshold is characterized by the Planck length: (5G/2)2 = 10% cm; the Planck
time: (FG/c>)!> = 10" s; and the Planck density: ¢/#G* = 10% g/cm?®. All of these magnitudes are
constructed out of fundamental constants: velocity of light ¢, Planck’s constant 4, and the New-
tonian gravitational constant G.

4. “Freely falling particles” is a technical term for particles that move in a given gravitational
field under the influence of no other forces.

5. The condition that the acceleration should be bounded is essential. A rocket moving with
unbounded acceleration would require an infinite amount of fuel, and such a condition could
hardly be regarded as physical.
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6. Technically, the singularities are not Hausdorff separated from the rest of space-time.

7. In this approach, in fact, the very notion of smoothness is generalized.

8. See Heller and Sasin 1995; strictly speaking, structured spaces are even more general than
differential spaces.

9. This family contains all smooth functions (in the usual sense) on space-time.

10. It is only noncontradictory with the mathematical structure of our model.

11. A beautiful example of such a space is provided by the so-called Penrose’s tiling, a tiling of
the Euclidean plane that has two basic tiles: kites and darts. Every finite patch of these tiles
occurs infinitely many times in any other tiling of the plane so that any two tilings are locally
indistinguishable. The space of all such tilings is a noncommutative space.

12.  This has been shown in Heller and Sasin 1996.

13.  Theologians would certainly notice an analogy between this generalization process and
the way of forming concepts referring to God in the traditional theology. I have in mind espe-
cially the so-called via emminentiae, a concept that is known from everyday usage is ascribed to
God, but only after it has been purified from all negative connotations and after all of its positive
connotations have been strengthened to their possible maximum.
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