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Neuroscientific Insights on
Biblical Myth
SIMPLIFYING HEURISTICS VERSUS CAREFUL
THINKING: SCIENTIFIC ANALYSIS OF MILLENNIAL
SPIRITUAL ISSUES

by Daniel S. Levine and Leonid I. Perlovsky

Abstract. There is ample evidence that humans (and other pri-
mates) possess a knowledge instinct—a biologically driven impulse
to make coherent sense of the world at the highest level possible. Yet
behavioral decision-making data suggest a contrary biological drive
to minimize cognitive effort by solving problems using simplifying
heuristics. Individuals differ, and the same person varies over time, in
the strength of the knowledge instinct. Neuroimaging studies sug-
gest which brain regions might mediate the balance between knowl-
edge expansion and heuristic simplification. One region implicated
in primary emotional experience is more activated in individuals who
use primitive heuristics, whereas two areas of the cortex are more
activated in individuals with a strong knowledge drive: one region
implicated in detecting risk or conflict and another implicated in
generating creative ideas. Knowledge maximization and effort mini-
mization are both evolutionary adaptations, and both are valuable in
different contexts. Effort minimization helps us make minor and rou-
tine decisions efficiently, whereas knowledge maximization connects
us to the beautiful, to the sublime, and to our highest aspirations. We
relate the opposition between the knowledge instinct and heuristics
to the biblical story of the fall, and argue that the causal scientific
worldview is mathematically equivalent to teleological arguments from
final causes. Elements of a scientific program are formulated to ad-
dress unresolved issues.
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IS THERE A DRIVE TO KNOW?

Leonid Perlovsky (2001; 2006a) has proposed that humans possess a knowl-
edge instinct (KI)—that is, a drive to create realistic internal models of the
world. This involves developing mental representations that are as consis-
tent as possible across different hierarchical levels of the brain.

The idea of a KI is controversial because it seems quite different from
standard biological instincts such as eating, sex, and aggression that hu-
man beings share with other animals. Also, the KI runs counter to the
long-established biological principle of effort minimization (EM).

The tradeoff between the KI and effort minimization is considered in
the ensuing sections of this article. Yet clearly the KI has the survival value
of leading us to generate as accurate an internal representation of the world
as possible. At the same time, the KI is closely involved with important
aspects of the quality and meaningfulness of life beyond mere survival,
such as play, curiosity, and beauty.

What is the scientific evidence for the existence of a KI? The brain sys-
tems involved in such an instinct have been but dimly suggested. Yet there
is a wide range of results both in experimental psychology and neuroscience
that support the overall notion.

Many psychological studies demonstrate that both humans and mon-
keys possess an exploratory drive, a curiosity about their environments
regardless of the instrumental value of the knowledge they acquire about
it. This has been known at least since the work of Harry Harlow in the
middle of the last century, who showed that monkeys will learn to solve
various kinds of mechanical puzzles when no external reinforcement is
provided other than the puzzle itself (Harlow 1953).

Also, it is well established that humans seek to reduce cognitive disso-
nance (Festinger 1957; Harmon-Jones and Mills 1999). For example, people
often experience dissonance when they discover inconsistency between their
own behaviors and professed beliefs, and this dissonance can generate physi-
ological signs of distress, such as a skin conductance response. The disso-
nance can be reduced in several ways: changing behaviors, changing beliefs,
or finding a higher-level synthesis of the two (Abelson 1959; Hardyck and
Kardush 1968; Harmon-Jones et al. 1996). In support of the notion of a
knowledge instinct, there are data suggesting that people tend to find chang-
ing beliefs less satisfying than synthesis. Social psychologists Roger Elkin
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and Michael Leippe (1986) showed that in some cases such attitude change
does not relieve the physiological discomfort caused by the dissonance,
suggesting that the attitude change has not been internalized at an uncon-
scious level. We return to their work later with a suggestion for a further
experimental test.

The KI is what drives both intellectual and aesthetic creativity (Perlovsky
2001; 2006a). We believe it also is essential for the difficult interpersonal
negotiations necessary for creation of a humane society, one in which each
individual considers others’ interests as well as his or her own.

Yet there also is abundant evidence that humans, like most biological
organisms, do not think or act optimally all the time (see Levine and Elsberry
1997 for a partial review). In particular, we often do not make decisions
using all of the information available to us. We tend to employ heuristics
(shortcuts or rules of thumb) that enable us to employ minimal cognitive
effort in decision making. Heuristics typically use a small but seemingly
important part of the available information in combination with previ-
ously developed beliefs. Often they result in solutions that may not be the
best but are adequate, minimize cognitive effort, and are made quickly.

Does the use of heuristics run counter to the KI? Or are both useful in
different situations? We next review some of the psychological data about
decision-making heuristics. Then we draw some analogies between these
different ways of thinking (the KI and EM) and aspects of a biblical story.
We then discuss what brain processes might be involved in both knowl-
edge maximization and effort minimization and also discuss some possible
neural bases for individual differences in the tendency to employ the knowl-
edge-maximizing versus the effort-minimizing mode of thinking.

HEURISTICS OR EFFORT MINIMIZATION

From the work of the pioneering eighteenth-century mathematicians Jakob
Bernoulli and Thomas Bayes through the late twentieth century, the domi-
nant notion in the psychology of human decision making was based on
rational optimization. The belief was that each decision maker had an in-
ternal, and self-consistent, subjective utility function and made all choices
involving risk by choosing the alternative for which the mathematical ex-
pectation of utility was the largest. But all that changed with the work,
starting in the late 1960s, of Daniel Kahneman, winner of the 2003 Nobel
prize in economics, and Amos Tversky, who would have shared that prize
had he been alive (Tversky and Kahneman 1974; 1981).

Tversky and Kahneman found that in many choices relating to gain and
loss estimation, preferences run counter to rational optimization and lack
self-consistency over different linguistic framings of the choice. For ex-
ample, subjects asked to consider two programs to combat an Asian dis-
ease expected to kill 600 people tend to prefer the certain saving of 200
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lives to a 1/3 probability of saving all 600 with 2/3 probability of saving
none. However, subjects also tend to prefer a 1/3 probability of nobody
dying with a 2/3 probability of 600 dying to the certainty of 400 dying.
The choices are identical in actual effect but are perceived differently be-
cause of differences in frame of reference (comparing hypothetical states in
one case with the state of all being alive, in the other case with the state of
all dying). Tversky and Kahneman explain their data by noting that “choices
involving gains are often risk averse while choices involving losses are often
risk taking” (Tversky and Kahneman 1981, 453).

Tversky and Kahneman were led to descriptions of a large repertoire of
simplifying heuristics that decision makers characteristically employ. Three
of these heuristics that are now widely recognized are availability (selective
enhancement of memory representations that come to mind easily), repre-
sentativeness (deciding on the likelihood of category membership based on
similarity of descriptive characteristics to those of the category), and an-
choring and adjustment (estimating numerical quantities by starting on a
suggested “anchor” value and then going up or down from that).

Also it has been shown that in multiattribute decision making, humans
frequently do not weigh all the attributes in proportion to their impor-
tance. Rather, they tend to simplify their search of alternatives by focusing
on one or two major attributes, and this tendency is actually increased by
the presence of information about a large number of other attributes (Payne,
Bettman, and Johnson 1993).

Most psychologists believe, however, that heuristics have evolutionary
value despite sometimes leading to errors and information loss. Heuristic
simplification is particularly useful when a decision must be made rapidly
on incomplete information, or when the stakes of the decision are not
high enough to justify the effort of thorough deliberation. An example is
buying a box of cereal in a supermarket (Levine 1997).

The use of heuristics such as availability, representativeness, and an-
choring and adjustment has been explained as minimization of cognitive
effort (Montgomery and Svenson 1976). How do humans, other animals,
or artificial neural systems decide when to search for maximum knowledge
and when to simplify? And how do individuals, normal or pathological,
differ in their criteria for choosing knowledge or simplification?

ADAM AND EVE—KI AND HEURISTICS

The origin of the controversy between the KI and heuristics can be traced
to the first pages of the Bible, to the story of Adam and Eve. In the twelfth
century Moses Maimonides in his “Guide for the Perplexed” (Maimonides
[1190] 1956) analyzed the relationship between KI and heuristics. He was
asked by his student: “Why did God, on one hand, give Adam the mind
and free will, while on the other, forbid him to eat of the tree of knowl-
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edge? Did God not want Adam to use his mind?” Maimonides answered
that God gave Adam the mind to think for himself what is good and what
is bad (we associate this ability with the KI). But Adam succumbed to
temptation and ate from the tree of knowledge, thereby taking a “short-
cut” and acquiring ready-made heuristics, that is, rule-of-thumb knowl-
edge to guide him so his choices did not require hard thinking. Maimonides
explained that Adam’s story describes our predicament. Whereas God’s
ultimate commandment is to use the KI, it is difficult and we are not
completely capable of doing it, especially when thinking about the highest
values. Adam’s story describes the workings of our mind: struggle between
the KI and EM. EM provides the surety of millennial cultural support, but
it may not suit our individual circumstances. The KI may lead to doubts
and uncertainties, but if successfully used it leads to the satisfaction of
being more conscious about our choices.

Maimonides’ interpretation of the biblical story adds another dimen-
sion to the previously discussed differences between the KI and EM. Math-
ematically, it is possible to formulate a mind’s utility function so that the
KI and EM are brought close to each other. This utility function can ac-
count for the survival value of quick decisions and also for the limited
amount of any individual experience, for uncertainty in observation of
data, and for minimizing the worst-case losses (such as preventing death)
versus maximizing average gain. The utility function even can account for
the fact that the future is unknown and therefore individual experience
should be integrated with culturally accumulated knowledge. But Mai-
monides hints at something different, something more fundamental than
correct formulation of a utility function. He suggests that “original sin”
determining the basic imperfectness of humankind is related to how we do
or do not use our ability for knowledge and for making conscious choices.

We now relate this biblical account to theoretical understanding and
experimental data about the mind and brain, consider neural mechanisms
of the KI and EM, relate them to conceptual and emotional intelligence
and to consciousness and the unconscious, and try to add scientific inter-
pretation to this millennial old mystery.

MECHANISMS OF THE MIND

The basic mind mechanisms making up operations of the KI have been
described mathematically by Perlovsky (2006a, b). Here we give a concep-
tual summary of this description, which is compatible with a large number
of experimental findings in cognitive science and psychology. The mind is
organized as a heterarchy of multiple levels; it is not a strict hierarchy be-
cause of feedback connections between levels (but we refer to a hierarchy
for simplicity). Perception of simple objects occurs at lower levels. Higher
levels are responsible for cognition of general and abstract concepts, which
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unify lower-level knowledge, and at the top of the hierarchy there are con-
cepts unifying our entire knowledge. As we argue later, these are concepts
of the meaning and purpose of life and existence.

At every level, mechanisms of perception and cognition involve interac-
tions between top-down and bottom-up signals. Top-down signals are gen-
erated by representations or mental models based partly on memories stored
at the higher levels. Bottom-up signals are generated by models recognized
and activated at a lower level; at the lowest level these come from sensory
organs. There are many levels between the retina of the eye and regions of
the cortex that recognize objects, but for simplicity we refer to object rec-
ognition as a single level, as if our eyes perceive objects due to object-
models. Object perception occurs when an object-model matches a subset
of signals in the retina corresponding to the object. But stored memories
never exactly match new sensory signals because “the same” object is never
really the same; angles, lighting, and surroundings are always different than
in the past. Therefore memories-models always have to be modified to
match signals. The matching mechanism is driven by the KI. The knowl-
edge instinct therefore is necessary for every act of perception.

When computers appeared in the 1950s, mathematicians thought that
soon they would be able to create artificial intelligence far surpassing the
human one. It did not happen. Why? The first attempts at creating intelli-
gent computers assumed that matching models to sensory data consisted
of selecting the correct model from a store of memories. Many years of
mathematical analysis led to a different conclusion: Stored representations-
memories-models are not exact but vague, so that they approximately match
various objects in a variety of conditions. The KI drives the process of
matching models to signals; in this process models become crisp and clear
and resemble the objects. Mathematically the KI maximizes a measure of
similarity between the models and signals. Normally we are unconscious
of this process and about vague models. We become conscious only about
the final result, the crisp models matching sensory signals; this is called the
resonance (between the model and signals). Still, it is easy to experience
directly the vague memories-models. Imagine a familiar object with closed
eyes. This imagination is vaguer than a crisp perception of a model-matched-
to-object. In summary, the KI evolves1 vague and less conscious models
into crisper and more conscious models that better match objects in bot-
tom-up signals.

This process of modifying models and matching them to bottom-up
signals is repeated at higher levels of the mind, where complex cognition
takes place. Abstract general models are like internal eyes of the mind2 that
“perceive” general concepts among lower levels’ bottom-up signals. This
process is amazingly close to the idea of homunculus often discussed in
prescientific literature about the mind. The homunculus was conceived as
a little mind inside our mind that perceived our perceptions and made
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them available to our mind. The fundamental difference is that the scien-
tific explanation does not need an infinite chain of homunculi inside ho-
munculi. Instead, there is a hierarchy of the mind models with their
conscious and unconscious aspects; recent neural-network theories and brain
imaging results are pointing the way toward a biological description of
these models. The conscious differentiated aspect of the models decreases
at higher levels in the hierarchy; they are less certain and more vague. At
the top of the hierarchy there are vague and mostly unconscious models of
the meaning of our existence.

The KI is manifest in emotional responses to matches and mismatches
at every level of perception and cognition. Stephen Grossberg and Daniel
Levine (1987) developed a neural-network model in which satisfaction or
dissatisfaction of instincts is felt as positive or negative emotions. The word
emotions is used for several related but different processes, including physi-
ological responses, cognitive appraisals, affective communications, and
neural signals. We use it here for neural signals that connect recognition
and decision-making brain regions with instinctual regions; they indicate
to instinctual mechanisms potential satisfaction or dissatisfaction of in-
stinctual needs. For example, a food object-model will send positive emo-
tional signals to the eating instinctual region of a hungry person; the food
object will receive a priority in the recognition process.

How do we feel satisfaction of the KI? At lower levels of object percep-
tion, emotional signals satisfying the KI usually are below threshold of
conscious registration. However, if objects around do not correspond to
our models, we immediately feel an intense disharmony (between reality
and our expectations). Thriller movies exploit this property of our percep-
tion, showing objects and situations that do not correspond to our mod-
els-expectations, thereby creating strong negative emotions. Perceptions at
lower levels are not much different in this respect from other autonomous
functions. For example, we do not consciously perceive the working of our
stomach mechanisms as long as everything is okay. But we become acutely
emotionally aware when our stomach does not function properly. At higher
levels of cognition, we feel both positive and negative KI-related emotions
consciously. For example, we feel happiness when we solve a complex prob-
lem that has occupied our mind for days and frustration when we are un-
able to solve it.

Emotions related to higher levels of the KI involve processes of thinking
and understanding more than bodily activities such as sex or eating do. For
this reason and this reason alone they can be called spiritual.3 Since Kant’s
work these spiritual emotions have been called aesthetic emotions. We
emphasize that these emotions are not reserved for artistic activities but
accompany every act of perception and cognition. At every level the KI
drives the learning of model-concepts to become crisper and more con-
scious. But at the higher levels, the model-concepts are intrinsically more
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vague and more difficult to make conscious; hence, more cognitive effort
is required for understanding them, for adapting them to life, and for mak-
ing them more conscious.

Correspondingly, we feel more aesthetic emotions when we succeed in
this. When the highest models of the meaning and purpose of existence
are adapted and made more conscious, we feel the presence of beauty. Noth-
ing in the world around us can be directly perceived as giving purpose and
meaning to our lives. In fact, random circumstances often seem to destroy
purposiveness. Nevertheless, to be able to endure life, to concentrate will,
and to achieve satisfaction, we have to believe that meaning exists. And
from time to time we experience this fleeting, but so dear, emotion of the
beautiful, when the KI is satisfied at the highest level.

The mechanism of sublime feelings is similar to beauty. Whereas the
beautiful is related to the highest models of cognition, the feeling of the
sublime is related to the highest models of behavior. A significant part of
behavior is similar to cognition in that it is governed by models. We un-
derstand how to act by matching models of behavior to circumstances.
Understanding the meaning and purpose is not sufficient; we also would
like to realize this understanding in our lives. To do this we need to de-
velop corresponding models of behavior. These models are vague and un-
certain, like the corresponding models of cognition. We do not know for
sure what the best way is to achieve the highest meaning and purpose in
our lives. (There is an opposite point of view, the belief that one can know
and can choose at will the best course of behavior. In the fourth century
this was called the Pelagian heresy by the Christian church.)

There is a mathematical reason why choices of the beautiful and sub-
lime cannot be made crisp, clear, and completely conscious: These choices
require evaluation and selection from infinite sets. Recognition of a simple
object, as discussed, requires matching the object model to a subset of
signals originating from the object. This subset has to be selected among
many other subsets. There are about 10,000 signals that each eye retina
receives ten times per second. Therefore perception requires thousands and
millions of signals to be matched to models of thousands of objects. But
let us forget for a moment about these large numbers and consider a choice
of just 100 object-models to be matched to subsets of 100 signals. The
number of these subsets is 100100. This number is larger than the sum of all
interactions among all elementary particles in the entire life of the Uni-
verse (Penrose 1989, 326–45). Thus, choices of the beautiful and sublime
require evaluation of a physically infinite number of subsets (and therefore
involve an infinite amount of information). Perception of objects around
us is helped by these objects actually being there, but cognition of abstract
high-level concepts does not have such firm grounds.

Each of us has definite values that limit our search among all these sig-
nals from the environment and from our own minds. Hence, models can
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partly illuminate our choices of the beautiful and sublime. But our math-
ematical argument shows that our highest aesthetic aspirations cannot be
fully reduced to neat computational formulas. Thus, modern science sup-
ports insights from many religions that ultimately the choices of beautiful
and sublime are beyond clear and conscious human reach. This resonates
with Maimonides’ belief that we must strive for the choice of the beautiful
and sublime, because we are given the KI but cannot completely fulfill this
demand especially in complex matters of important life choices. We are
bound to resort sometimes to shortcuts, heuristics. We have to use collec-
tive wisdom accumulated over millennia.

This conclusion does not resolve the matter of original sin, however.
What is so sinful about not being able to do the impossible? Why did the
early Christian church declare the quite reasonable teachings of Pelagius to
be heretical? Why is Maimonides’ interpretation of the Adam and Eve
story still controversial? Why is Friedrich Nietzsche’s concept of the super-
man—the ideal man who will be able to decide what is good and bad by
thinking for himself (Nietzsche [1885] 1999)—often scorned or misun-
derstood?

Such questions dramatize the constant tension in human cultures be-
tween maximizing knowledge in order to enhance human potential and
restricting knowledge in order to preserve known or comfortable social
relationships. All of culture, including religion, is produced by our brains
acting in society. Hence, we can obtain some insights into the sources of
this tension, and indeed of original sin itself, from theories about how the
brain is organized to perform cognitive functions.

We develop here a theory of brain organization that encompasses both
the knowledge instinct and effort minimization, as well as differences be-
tween individuals in the tendency toward either KI or EM. In order to
understand this complex and intricate set of phenomena we must search
for what evolutionary biologist Edward Wilson (1998) calls consilience: a
set of principles and system understandings that is self-consistent across
different disciplines and the different levels of understanding those disci-
plines foster. Because the common language of mathematics often enhances
the possibility of this kind of interdisciplinary consistency, we turn now to
mathematical neural-network models to sharpen our understanding about
the KI/EM tradeoff.

NEURAL-NETWORK THEORIES

What are neural networks exactly? They have become a widely used com-
putational modeling tool in neuroscience and experimental psychology as
well as a device for engineering applications of intelligent systems. Yet they
have been surrounded by a certain amount of hype and misconception.
The term neural network does not yet have a universally accepted defini-
tion. Perhaps the closest is the following:
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. . . a neural network is a system composed of many simple processing elements
operating in parallel whose function is determined by network structure, connec-
tion strengths, and the processing performed at computing elements or nodes. . . .
Neural network architectures are inspired by the architecture of biological ner-
vous systems, which use . . . processing elements operating in parallel. (DARPA
1988; emphasis added)

Neural-network nodes, the elements in network diagrams, need not be
interpreted as single neurons but have activities that are idealized frequen-
cies of neuron firing. The connections between nodes have weights that are
idealized strengths of synapses between different neurons. The ultimate
aim is to make these networks as biologically realistic as possible. Some-
times nodes correspond to brain areas or specific cell types in those brain
areas. At other times, when not enough is known about brain processes or
when modeling at a functional level is desired, nodes correspond to cogni-
tive entities such as the memory of a specific word, the tendency to ap-
proach a specific object, or the intensity of a specific drive or emotion.

The history of computational neural networks as used in cognitive and
behavioral neuroscience, as they have gradually moved toward greater bio-
logical realism as more data has become available, is reviewed elsewhere
(Levine 2002; 2007a). One of the best mathematical theories for interac-
tions between multiple processing levels in the brain is adaptive resonance
theory (ART), developed by Gail Carpenter and Stephen Grossberg. In
particular, ART has been widely used as a network for linking together
representations of categories and of their attributes. A very brief review of
ART follows. Much more detail appears in Grossberg 1999.

In its simplest form (Figure 1), the ART network consists of two inter-
connected layers of nodes (neurons), called F

1
 and F

2
. F

1
 (“bottom”) is

assumed to consist of nodes that respond to input features. F
2
 (“top”) is

assumed to consist of nodes that respond to categories of F
1
 node activity

patterns. Learning takes place at both bottom-up and top-down connec-
tions (synapses) between the two layers.

The F
1
 nodes do not directly interact with each other, but the F

2
 nodes

competitively inhibit each other’s signals. Such competition is a common
device in neural networks for making choices in short-term memory. In
this version, the simplest form of choice (winner take all) is made—only
the F

2
 node receiving the largest signal from F

1
 becomes active. To com-

pute the signal received by a given F
2
 node, the activity of each F

1
 node in

response to the input pattern is weighted by the strength of the bottom-up
synapses from that F

1
 node to the given F

2
 node, and all these weighted

activities are added.
Inhibition from the F

2
 level to the F

1
 level shuts off most neural activity

at F
1
 if there is mismatch between the input pattern and the active category’s

prototype. Only with a sufficiently large match are enough of the same F
1

nodes excited by both the input and the active F
2
 category node, which is

needed to overcome nonspecific inhibition from F
2
.
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If match occurs, F
1
 activity is large because many nodes are simulta-

neously excited by input and prototype. If mismatch occurs, F
2
 reset shuts

off the active category node as long as the current input is present. The
criterion for matching is that some function representing the degree of
match between top-down and bottom-up patterns must be greater than
some positive constant r, which is called the vigilance of the network.

How is the degree of abstractness or generalization controlled? In the
ART model, a low value of the vigilance parameter makes the network
learn broad categories, whereas high vigilance makes the network learn
more specific categories.

In Carpenter and Grossberg 1987 the vigilance r is a uniform parameter
of the network. It is expressed as a gain of a signal from F

1
 to the orienting

node. This can be adapted easily to attribute-selective vigilance (see Leven
and Levine 1996) by setting different values of the gain from each node at
F

1
 representing a different stimulus attribute. Also, multiple ART modules

can be combined into hierarchical networks with three or more levels of
abstraction (Carpenter and Grossberg 1990). The top level of one ART
module can be the bottom level of another ART module. Also, an ART
network can be extended to include modules representing relationships
between other modules, as Nilendu Jani and Levine (2000) did in model-
ing the learning of analogies.

A neural architecture developed by Perlovsky (Perlovsky and McManus
1991; Perlovsky 2001), Neural Modeling Fields (NMF), is similar to ART
in many respects. NMF can be considered an extension of ART toward

Fig. 1. ART 1 architecture. Short-term memory is encoded at the feature
level F

1
 and category level F

2
, and learning at interlevel synapses. The orienting

system generates reset of F
2
 when bottom-up and top-down patterns mismatch at

F
1
, that is, when the ratio of F

1
 activity to input activity is less than the vigilance

r.  Arrows denote excitation, filled circles inhibition, and semicircles learning.
(Adapted from Carpenter and Grossberg 1987, with permission of Academic Press.)
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ideas of the KI, concept-models, and mental hierarchy. NMF uses com-
plex models at the higher level F

2
. The original state of these models is

vague and fuzzy. The KI drives the process of model improvement, model
adaptation to patterns in bottom-up signals. NMF uses a mathematical
measure of similarity between top-down signals coming from models in F

2
and bottom-up signals in F

1
. Mathematically, the KI maximizes the simi-

larity. Aesthetic emotions are changes in this similarity measure and take
active part in adapting models to signals, making models more clear, crisp,
and conscious. Models that were successfully matched to patterns in bot-
tom-up signals achieve a resonant state, a high degree of certainty, and are
available to consciousness. These models are activated and send signals to
the next level of more abstract and general concepts. This architecture is
shown schematically in Figure 2.

Mathematical description of the operations of the KI within the hierar-
chical structure of the mind is a matter of ongoing and future research
(Perlovsky 2004; 2006a, b, d). Here we outline some details beyond those
discussed in the previous section. It is sometimes convenient to refer to the

Fig. 2. Hierarchical NMF system. At each level of a hierarchy there are mod-
els, similarity measures, and actions (including adaptation, maximizing the knowl-
edge instinct - similarity). High levels of partial similarity measures correspond to
concepts recognized at a given level. Concept activations are output signals at this
level and they become input signals to the next level, propagating knowledge up
the hierarchy. Each concept-model finds its mental meaning and purpose at a
higher level. (Signal flows leading to adaptation of behavioral models are not
shown; they are similar to cognitive models).
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two neuronal population levels in Figure 1 as a single processing level,
where the KI improves and creates new models, which better match pat-
terns in the bottom-up signals. This process of creating more specific, more
diverse models increases specificity and diversity of knowledge. Following
Carl Jung, we call this process differentiation.

At a single level, the purpose4 of each model is to satisfy the knowledge
instinct by finding patterns in the bottom-up signals and adapting to these
patterns. There also are meanings and purposes related to bodily instincts;
for example, food objects can be used to satisfy needs for food and desires
for eating. In this essay we limit our discussion to spiritual5 needs, to the
knowledge instinct.

Models acquire deeper meanings and purposes at higher hierarchical
levels. The pure aesthetic feeling of harmony between our knowledge and
the surrounding world at lower levels, as discussed, is below the threshold
of conscious registration in our minds. We do not feel much joy from
understanding simple objects around us. But we do enjoy solving complex
problems that required a lot of time and effort. This emotional feel of
harmony from improving/creating high-level concept-models is related to
the fact that high-level concepts unify many lower-level concepts and in-
crease the overall meaning and purpose of our diverse knowledge. Follow-
ing Jung, we call this process synthesis (Jung [1922] 1971). Jung emphasized
that synthesis is essential for psychological well-being.

Synthesis, the feel of overall meaning and purpose of knowledge, is re-
lated to the meaning and purpose of life, which we perceive at the highest
levels of the hierarchy of the mind. At those high levels, as discussed, mod-
els are intrinsically vague and undifferentiated, not only in terms of their
conceptual content but also in terms of differentiation between the con-
ceptual and emotional. At the highest levels of the mind the two are not
quite separable. This inseparability, which we sometimes feel as a meaning
and purpose of our existence, is important for evolution and survival. If
the hierarchy of knowledge did not support this feeling, the entire hierar-
chy would crumble, which was an important (possibly the most impor-
tant) mechanism for collapses of former civilizations. The KI demands
satisfaction at the lowest levels of understanding concrete objects in the
environment and also at the highest levels of the mind hierarchy, under-
standing of the entire knowledge in its unity, which we feel as meaning
and purpose of our existence. Hence the KI paradoxically drives us toward
both differentiation and synthesis (Perlovsky 2006c).

Neuroscience provides suggestions for where vague model-concepts come
from. At lower levels of the mind hierarchy, vague models rely on inborn
properties of the brain (Grossberg 1988; Zeki 1993); their differentiation
and adaptation are grounded in patterns in sensory signals. These mecha-
nisms of perception we share with animals. But where do abstract and
general models originate? Clearly, babies are not born with abstract ideas
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or cognitive concepts in their minds such as those of rationality, abstract-
ness, or purpose. These ideas also cannot be formed by selecting useful
combinations of simpler ideas or concepts, as we do with objects that are
directly perceived in the surrounding world. As discussed earlier, there are
too many combinations of simpler ideas/concepts; evaluating them and
selecting the useful ones is too slow a process. The evolution of language
enabled human beings to form and select abstract, high-level ideas in ways
that are inaccessible to other animals. In our minds there are two parallel
and interacting hierarchies for cognition and for language, as illustrated in
Figure 3.

Ability for learning higher levels of the hierarchy is closely related to
ability for language. The reason is that otherwise there is no ground for
learning cognitive models—there are no abstract concepts that could be
directly perceived in the world. The only ground for learning abstract cog-
nitive concepts is language concepts, which are learned from surrounding
language and culture at many hierarchical levels. In the integrated NMF
system, abstract cognitive models at higher levels in the hierarchy are
grounded in abstract language models.

The double hierarchy of Figure 3 integrates language and cognition. A
data stream constantly comes into the mind from all sensory perceptions;
every part of this data stream is constantly evaluated and associated with
cognitive and language models. At the beginning, the models are vague,
fuzzy; cognitive models vaguely correspond to uncertain undifferentiated
sensory perceptions. Language models vaguely correspond to sounds. This
is approximately the state of the mind of a newborn baby. First, models of

Fig. 3. Hierarchical integrated language-cognition NMF system. At each level
in a hierarchy there are integrated language and cognition models. Initial models
are fuzzy placeholders, so integration of language and cognition is subconscious.
Associations between signals and models depend on language, cognitive models,
and signals. Therefore language model learning helps cognitive model learning and
vice versa. Abstract cognitive concepts are grounded in abstract language concepts.
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simple perceptions differentiate; objects are distinguished in visual percep-
tion. Language sounds are differentiated from other sounds. Until about
one year of age, perception models corresponding to simple objects be-
come crisper at a faster rate than language models. Between the first and
second year of life the speed of adaptation of language models tremen-
dously accelerates and overtakes learning of cognitive models. By the age
of 5 or 7, a child knows a tremendous number of language models (words,
rules of grammar), which have attained differentiated, crisp status. At 5 or
7 a child can talk about much of the entire cultural content. But it will
take the rest of his life to associate language models with cognitive models,
adapt them to real-life situations, and acquire highly differentiated crisp
cognitive models.

Language models are acquired from the surrounding culture ready-made,
differentiated, without any effort. This is so because of a special inborn
mechanism in the mind, which Steven Pinker called the language instinct
(1995). But the language instinct does not connect language models to
reality. Language models provide just a starting point for developing cog-
nitive models. Cognitive models have to be adapted to the world. Cultural
knowledge is acquired when cognitive models attain the same differentia-
tion as language models differentiated in culture. This process, as we dis-
cussed, is driven by the KI and involves aesthetic emotions.

Language models are crisp and conscious, and as long as we speak with-
out thinking, like children, we may perceive ourselves as conscious and in
control of our thoughts and life. But when we apply knowledge contained
in language to real life, we may experience uncertainty in our thoughts and
behavior corresponding to the vague and unconscious state of our cogni-
tive models. For example, every 5-year-old knows about good guys and
bad guys, but who can claim at 40 or 70 that he or she applies this knowl-
edge in his life without error? Philosophers and theologians have argued
about good and evil for thousands of years, and these arguments are likely
to continue forever. Crisp and clear language models give heuristics for use
in real life. Thinking for oneself requires using the KI to develop cognitive
models that are adapted to one’s own life experience (ideally, including the
entire cultural heritage).

Returning to differentiation and synthesis, emotional investment in each
concept decreases with an increase in the number of concepts, and a drive
for differentiation and creating more concepts subsides. Emotional invest-
ment in a concept is a measure of the meaning and purpose of this concept
within the mind system—that is, a measure of synthesis. Thus, the drive
for differentiation requires synthesis. Synthesis leads to differentiation,
whereas differentiation decreases synthesis. The KI demands both differ-
entiation and synthesis, but these mechanisms contradict each other. Here,
along with the dichotomy between KI and EM, may be another root of the
fundamental contradiction in human nature that some call original sin.
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People differ from one another in their ability to connect language and
cognition. Many individuals are good at talking, without fully understand-
ing how their language concepts are related to real life. On any subject,
they can talk one way or another without much emotional investment. Yet
successful synthesis of language and cognition involves synthesis of the
emotional and conceptual contents of the psyche. The other side of these
relationships is too much synthesis. High-value concepts (related to family
life, or political cause, or religion) are so important to us and so emotional
that we cannot coldly analyze and thereby differentiate them. Too high a
level of synthesis invests concepts with too much emotional value, so that
differentiation is stifled (Perlovsky 2007). People resort to heuristics, to
ready-made knowledge acquired with language.

In summary, the choice between increase of knowledge and minimiza-
tion of cognitive effort, between the KI and EM, Maimonides connected
to original sin. The Bible identifies it as the fallen condition of human-
kind, the source of the world’s miseries. Buddhism sees the source of hu-
man unhappiness as tanha, loosely translated as “desire” or “attachment”
(Smith 1958) but, from a scientific perspective, meaning self-absorbed
deficiency-based emotions leading to overreliance on EM heuristics. The
KI involves individual effort for increasing knowledge and aesthetic emo-
tions; at the highest levels of the mind hierarchy it involves the beautiful
and sublime. It also involves the conscious and the unconscious, the con-
ceptual and the emotional, language and thinking. There is a difference
between the “fallen,” bodily emotions involved in EM, in using language
without thinking, and aesthetic emotions related to the KI.

What are the relationships between the high and low, between aesthetic
emotions of the beautiful and sublime, and primitive emotions of mini-
mizing cognitive effort? And what are the roles of these mechanisms in the
entire system of the mind? Answering these questions requires dedicated
scientific programs, and some of these are underway. The previous part of
this article demonstrated that these questions can be formulated scientifi-
cally. In the next section we make a step toward more detailed formulation
of such a scientific program and relate theoretical considerations of the
mind mechanisms to psychological experiments and to brain regions, both
those that we share with other animals and those uniquely human.

RELEVANT BRAIN REGIONS

We turn now to some cognitive neuroscience data that do not fully answer
the questions about KI versus EM but begin to address them. After a re-
view we suggest a few experiments yet undone that may further increase
our understanding of knowledge maximization versus effort minimization,
between “high” and “low.”

The tendency that Tversky and Kahneman (1974; 1981) found for de-
cision makers to be susceptible to linguistic framing is not universal. A
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significant minority of adults (along with most young children) are not
susceptible to the distortions of rational decision making caused by fram-
ing effects.

A functional magnetic resonance imaging (fMRI) study (DeMartino et
al. 2006) showed significant differences in brain region activation between
individuals who were and were not susceptible to framing effects. This
study used a monetary analog of Tversky and Kahneman’s “Asian disease”
problem. Subjects had to choose between a sure option and a gamble op-
tion, where the sure option was expressed either in terms of gains (keep
£20 out of the £50 they initially received) or in terms of losses (lose £30
out of the initial £50).

As in the Asian-disease problem, the majority of subjects chose the sure
option with a gain frame and the gamble option with a loss frame. Yet
there were significant minorities of subjects who chose the gamble with a
gain frame or the sure option with a loss frame, in violation of the usual
heuristics. fMRI measurements showed that the heuristics violators had
more activation than the heuristics followers in two major areas of the
frontal lobes and adjacent cortex—the orbitofrontal cortex (OFC) and
anterior cingulate cortex (ACC). Conversely, those subjects whose choices
were consistent with the framing heuristic had more activation in the
amygdala, the area below the cortex that is most involved with primary
emotional experience.

The OFC, ACC, and a third prefrontal region, the dorsolateral prefron-
tal cortex (DLPFC), are part of what is called the executive system of the
brain (Pribram and Luria 1973). Some of the functions of these regions are
reviewed in Levine 2007b and are summarized here as follows.

Damage to the OFC in humans often leads to decision-making deficits
and socially inappropriate behavior, as in the famous nineteenth-century
patient Phineas Gage (Damasio 1994). These clinical observations, together
with animal lesion studies, suggest that the OFC forms and sustains men-
tal linkages between specific sensory events, or motor actions, and positive
or negative emotional states. Long-term storage of positive or negative emo-
tional values is likely to be at connections between the OFC and amygdala
(Schoenbaum et al. 2003).

The DLPFC is a working-memory region and is more closely connected
with the hippocampus, the site of memory consolidation, than with the
amygdala. It is involved in information processing at a higher level of ab-
straction than the OFC. For example, OFC lesions in monkeys were found
to impair learning of changes in reward value within a stimulus dimen-
sion, whereas DLPFC lesion impaired learning of changes in which di-
mension was relevant (Dias, Robbins, and Roberts 1996).

The ACC is activated when a subject must select or switch among dif-
ferent interpretations or aspects of a stimulus (Posner and Petersen 1990).
Also, in an attentional task with emotional distractors, ACC was the unique
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area whose activation increased to both target (task-relevant) and distract-
ing stimuli (Yamasaki, LaBar, and McCarthy 2002). Recent theories of
ACC function have emphasized its role in detection either of potential
response error or of conflict between signals promoting competing responses
(Botvinick et al. 2001; Brown and Braver 2005).

Hence, executive regions of the cortex are more readily activated when
knowledge motivations are engaged than when simplifying heuristics are
employed. This is closely related to the long-established distinction in cog-
nitive psychology between controlled and automatic processing (Schneider
and Shiffrin 1977). What is the variable that changes between these two
modes? The data suggest that the interplay between the two modes can be
studied by means of some neural-network parameter that varies both be-
tween individuals and between domains in the life of the same individual.
Such a parameter is vigilance, used in adaptive resonance theory (Carpen-
ter and Grossberg 1987).

Figure 4 shows a three-level hierarchical ART network for knowledge
encoding and processing. This figure should be taken as a skeletal diagram
of relevant processes rather than a complete neural network for those pro-
cesses that will take years to develop. In the network of Figure 4, simple
heuristics involve feedback between the amygdala and OFC and do not

Figure 4. Proposed multilevel brain network that can either minimize effort or
maximize knowledge. With low vigilance, the ART module combining F

1
 and F

2
(amygdala and OFC) makes decisions based on simple heuristics. With high vigi-
lance, discontent with outcomes of simple decisions generates activity in the ori-
enting (error) module (ACC). ACC activity in turn may generate a search for
more complex decision rules at F

3
 (DLPFC).
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engage the other two prefrontal executive areas (the error detector at ACC
and the complex working memory analyzer at DLPFC). The individual
with higher vigilance in the pursuit of knowledge, whether this vigilance is
general or domain-specific, is sensitive to mismatches between the results
of those heuristics and logical truth. This leads in turn to engagement of
the other executive regions.

In the fMRI experiment (DeMartino et al. 2006), the more vigilant
subjects had increased neural activity in OFC and ACC, but not as much
in DLPFC as Figure 4 might suggest. The framing-influenced monetary
decision task, however, may not be complex or abstract enough to engage
the DLPFC. One partial test of our theory would be an fMRI study of
better versus worse decision makers on a more complex decision task, one
involving competition between different abstract principles, which there-
fore is more likely to engage complex working memory manipulations at-
tributed to the DLPFC. An example relates to confusion between frequency
and probability (Pacini and Epstein 1999), where subjects are shown two
bowls containing red and white jelly beans and need to choose which bowl
gives them the best chance of randomly choosing a red jelly bean when the
ratios are, say, 8 out of 100 in one bowl and 1 out of 10 in another bowl.
Our prediction is that those who correctly choose the higher probability (1
out of 10) will show greater DLPFC activation than those who incorrectly
choose the higher frequency. One of us (Levine) is currently collaborating
with Daniel Krawczyk of the University of Texas Southwestern Medical
School on running brain imaging experiments to test that prediction. Also,
more mathematical modeling needs to be done to specify the variables that
actually correspond to activations of specific regions and how those relate
to variables in the dynamical system equations that define model networks
such as ART.

What might be a possible neural mechanism for aesthetic emotions? If
the highest levels of processing are engaged, we propose that the error de-
tector in the ACC of Figure 4 could become acutely sensitive to matches
and mismatches of actual events with both cognitive and emotional expec-
tations. The anterior cingulate traditionally was considered part of the limbic
system, the network of regions below the cortex (including the amygdala)
that is involved in emotional expression (MacLean 1990). The ACC is
known to be involved in contributing to the subjective pain perception,
with the intensity of pain correlating with ACC activation (Posner and
DiGirolamo 2000). The connections of the anterior cingulate portion of
the brain’s executive system with more primitive subcortical and viscerally
connected emotional areas (in the limbic system, hypothalamus, and mid-
brain) means that aesthetic emotions have a partial common substrate with
the more primitive emotions related to survival.

The higher up we go in the hierarchy, the closer we are to the beautiful
and sublime, the easier, it seems, to succumb to the temptation to stop
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thinking and to use ready-made concepts acquired from the culture: lan-
guage concepts connected not to individual thinking but to Mom-and-
Dad prohibitions, to amygdalar emotions triggered by previous failures,
when we tried to think and got burned. Figure 4 should be understood as
a scheme for structuring each one of the hierarchical levels in Figure 2.

The loops in the brain involving the anterior cingulate along with deeper
areas of the “visceral brain” (MacLean 1990) provide an explanation for
the close kinship between the most complex products of the knowledge
instinct (art and science, for example) and our basic emotional sensibili-
ties. They also help to explain experimental data showing that cognitive
dissonance can lead to physiological signs of emotional arousal, even when
that dissonance has no long-term consequences for the subject or anyone
else (Harmon-Jones et al. 1996).

This suggests another possible behavioral experiment to test our theory.
Elkin and Leippe (1986) noted that subjects given the choice to write an
essay that disagreed with their previously held beliefs, and yet writing the
essay anyway, often changed their beliefs to relieve the dissonance between
their beliefs and actions, but still showed physiological signs of arousal or
discomfort. What would happen if instead of giving the subjects an oppor-
tunity to change their beliefs, we gave them a chance to arrive at a mental
synthesis between their beliefs and their behavior (for example, to tell them-
selves that their beliefs have not changed but they enjoyed exploring argu-
ments in favor of the opposite position)? Would that eliminate the
physiological discomfort, or even promote positive affect from enjoying
the intellectual challenge? Our hypothesis is that mental synthesis would
provide physiological comfort, at least in subjects who are high in their
enjoyment of effortful cognitive activity, which in experimental psychol-
ogy has been formalized by a construct called need for cognition (Cacioppo
et al. 1996).

CAUSALITY VERSUS TELEOLOGY

Teleology explains the universe in terms of purposes. This usually is associ-
ated with religious purpose, as it suggests an ultimate Designer must exist.
Therefore, teleology is a hot point of debates between creationists and evo-
lutionists. Is there a purpose in the world? Evolutionists assume that the
only explanation is causal. Newton’s laws gave a perfect causal explanation
for the motion of planets: A planet moves from moment to moment under
the influence of a gravitational force. Similarly, today science explains
motions of all particles and quantum fields according to causal laws, and
there are exact mathematical expressions for fields, forces, and their mo-
tions. Causality explains what happens in the next moment as a result of
forces acting in the previous moment. Science is associated with causal
explanation and opposed to teleological explanations in terms of purposes.
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The very basis of science, it seems, is on the side of causality, and religion
is on the side of teleology.

However, the contradiction between causality and teleology does not
exist at the basic level of fundamental physics. The laws of physics, from
classical Newtonian laws to quantum superstrings, can be formulated equally
as causal or as teleological. An example of a teleological principle in phys-
ics is energy minimization. This posits that particles in each moment “know”
their purpose: to move so as to minimize energy. The most general physi-
cal laws, including those governing causal dynamics, motions of particles,
quantum strings, and superstrings, are formulated as minimization of a
mathematical expression called the Lagrangian (Feynman and Hibbs 1965).
A particle under force moves from point to point as if it knows its final
purpose, to minimize the Lagrangian.

The KI is mathematically similar to these general physical laws; evolu-
tion of the mind is guided by maximization of knowledge. For the first
time in a complex system, the mind, teleological principle is mathemati-
cally equivalent to causal dynamics. Cognitive effort minimization might
interfere from time to time, but still evolution of the mind proceeds to-
ward more knowledge. Models of human decision making went from one
extreme of the artificial-intelligence models of the 1960s that included
long-term planning but not emotion, to the other extreme of emotion-
based models from the 1980s and 1990s that dealt only with short-term
EM heuristics. Only recently, as more cognitive data about brain regions
has become available, have decision models started to integrate long-term
planning and emotional influences (Funahashi, Lee, and Rushworth 2006;
Levine 2006).

Both the KI and Lagrangian result in equivalency of causal dynamics
and purposive dynamics. We would like to emphasize that a general scien-
tific assumption is that all biological laws ultimately are founded in phys-
ics. This, however, does not guarantee equivalency of causality and purpose.
This equivalency exists in physics only for elementary interactions (of a
few particles). For complex systems, statistical physics rules. It gives rise to
the second law of thermodynamics, stating that less probable states evolve
into more probable states—that is, entropy always increases. This defines
the “arrow of time.” Also, entropy increase may sound like a teleological
principle, but it is not; dynamic causal laws cannot be inferred from en-
tropy increase. According to statistical physics and entropy, the end state
of the Universe is thermal equilibrium, “thermal death.” This conclusion
prevailed in the nineteenth and the first part of the twentieth century, but
contemporary physics suggests that when effects of gravity are considered,
thermal death is not inevitable. Yet cosmological theory was not yet able to
incorporate equivalency of causality and purpose.

In this regard the KI is a revolutionary principle. For the first time it
states that for a very complex system, the human mind, causality and purpose
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are equivalent. Instead of the rule of entropy, arrow of time, and thermal
death, the human destiny is ruled by increase of knowledge. This may be a
scientific interpretation of a mysterious biblical statement that time be-
longs to the “fallen world” of matter and that in the redeemed world “time
will be no more” (Revelation 10:6 KJV).6 One does not have to choose
between scientific explanation and teleological purpose; causal dynamics
and purpose-driven dynamics (teleology) are mathematically equivalent.

CONCLUSIONS

Figure 4 is a first approximation to a network that can incorporate the
differences in vigilance, and therefore in knowledge seeking, between indi-
viduals or between domains for the same individual. It is built on previ-
ously established models of simpler processes such as perception and
categorization.

When Albert Einstein said “Seek simplicity and distrust it,” he was com-
paring experimental observations with the predictions of relatively simple
rules for the physical universe. Einstein found mismatches with Newto-
nian theory in areas that seemed minor in the large scheme of the theory
(such as black body radiation). Yet his level and selectivity of vigilance, in
some sense, was high enough to generate a search for a major new theory
based on those seemingly minor mismatches.

Within each of the brain areas discussed here, there are multiple layers
of cortex, cell types, and chemical neurotransmitter systems not included
in Figure 4. More realistic neural models of decision processes (see Brown,
Bullock, and Grossberg 2004; Levine, Mills, and Estrada 2005) include
such biological details. Yet the schema of Figure 4 appears to capture the
gist of some basic processes important for knowledge networks to operate
in a complex and nonstationary environment.

How can a biological or artificial network be trained to develop the level
of vigilance appropriate to each task and context? Explaining differences in
thinking between Einstein and other investigators in terms of a single pa-
rameter, vigilance, is a vast oversimplification; any theory always mismatches
data in many ways. Deciding which mismatches are fundamental and which
are not will require much more than a single number. This is a subject for
further investigation. There are a variety of neural-network training meth-
ods already in the literature, and some may be adaptable to interhuman
interactions such as psychotherapy, education, parenting, and mentoring.
Practical solutions to this problem of training may require a differentiated
KI, a theory that is now only being created. But the best answer is what
Artur Rubinstein said, according to an anecdote, when a tourist in New
York asked him how to get to Carnegie Hall: “Practice, practice, practice!”
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NOTES

1. Throughout this paper, usually the words evolution and evolving refer to evolution in the
mind. We rarely refer to genetic evolution. The reason is that with the emergence of language,
cultural evolution greatly outpaced genetic evolution. Richard Dawkins (1976) writes in this
regard about emergence of new replicators (words and ideas) more powerful than old replicators,
genes.

2. This analogy between models and eyes is a literal description of the fact that mathemati-
cal mechanisms of perception of general concepts among lower-level concepts are the same as
perception of visual features and objects in the retina of the eye. Contrary to this, the following
analogy with a homunculus should not be taken literally for scientific explanation. It is given
for those who appreciate analogies instead of exact mathematical or neural descriptions and
can be ignored if this analogy does not help or is distracting. Those interested in exact scientific
mathematical description of these mechanisms should consult Perlovsky 2006a, c and further
references therein.

3. In this article we adhere to a scientific view that there is no difference in substance
between matter and spirit. Our spiritual experiences are results of material processes in the
brain. We emphasize that this is commensurate with monotheistic views and contrary to the
dualistic position that spirit and matter are of different substances. A dualistic view cannot be
reconciled with this essay or with contemporary science. Our attempt here to unify spirit and
matter, body and mind takes into account all known scientific data in psychology, neurobiol-
ogy, and mathematical mechanisms unifying experimental data.

4. Every element or mechanism within a living being is a result of long evolution and
evolved for a purpose. Purpose and function are related but not exactly equivalent. Whereas
purpose is related to the question Why? and to explanation from final causes, function is re-
lated to the question How? and to “mechanical” or dynamic causes. When we discuss specific
neural mechanisms, we sometimes refer to functions, or mechanisms of functioning. Since
Aristotle and Kant it has been well appreciated that understanding of living beings requires
understanding of final causes. Scientific explanation requires unifying dynamic and final causes.
We attempt such unification throughout this essay; in particular here we refer to a purpose in
a relatively simple mechanism, where both causal and purposeful aspects are relatively easy to
trace. We return to this question in the final section of the article.

5. We remind the reader that in this article spiritual refers to mechanisms of the brain (see
note 3).

6. King James Bible translation: “there should be time no longer.” Many other authorita-
tive translations: “time will be no more” (for example, Henry 2003). We would like to empha-
size that except for this sentence, the content of this section is exact science. We do not think
that every word of the Bible has to be amenable to exact scientific interpretation. Nevertheless,
when mysterious intuitions of biblical authors have scientific parallels, pointing out those par-
allels can add to our understanding of the Bible. This is the reason for this sentence.
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