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SYSTEMS BIOLOGY AND PREDICTIVE NEUROSCIENCE:
A DOUBLE HELICAL APPROACH

by Harris Wiseman

Abstract. This article explores the overlap between systems biology
and predictive neuroscience, placing them in their larger context, the
contemporary trend of bioinformatic convergence across the sciences.
These two domains overlap with respect to their interest in data accu-
mulation and data integration; their reliance on computational statis-
tical correlation; and their translational goals, that is, producing prac-
tical fruits and applications from the interscientific cross-pollination
that contemporary data-integrative approaches make possible. The in-
terventions that such translational conversations generate are medical
and social in nature, and are aimed at both prevention (through pre-
diction) and treatment. It will be argued that such approaches, socially
and medically applied, contain potential for conveying both agency-
enhancing and agency-diminishing social messages. The article con-
cludes with a call to balance the overwhelmingly quantitative focus
characteristic of predictive neuroscience with more qualitative empir-
ical methodologies. This would represent a double helical approach.

Keywords: agency; computational biology; holism; mechanism;
modeling; omics; predictive neuroscience; scientific convergence; sys-
tems biology

SYSTEMS BIOLOGY

What Is Systems Biology?

Systems biology has many distinct forms and it is rather difficult to
give the domain a singular overarching definition. Nature (2016) defines
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systems biology as “the study of biological systems whose behavior cannot
be reduced to the linear sum of their parts’ functions.” Hiroaki Kitano,
a key proponent of systems biology, writes that, though there are diverse
approaches within systems biology, systems approaches tend to involve
“integration of experimental and computational research” (Kitano 2002)
applied, for the most part, to large biological data sets so as to explore the
interactions between the biological components of the system in question.
Quantitative modeling methods can then be applied to help form concrete
empirical hypotheses, which can be tested by standard biological empirical
means (Nature 2016). As Trey Ideker writes: “Systems biology studies bio-
logical systems by systematically perturbing them (biologically, genetically,
or chemically); monitoring the gene, protein, and informational pathway
responses; integrating these data; and ultimately, formulating mathemat-
ical models that describe the structure of the system and its response to
individual perturbations” (Ideker, Galitsky, and Hood 2001, 343).

The causal workings in biological systems, composed as they are of
often tremendous numbers of variables, are not adequately described in
linear A → B → C terms, but rather need to be understood as operating
through multisynchronous systems of feedback operating concurrently.
Indeed, such causal relations are best understood as comprising linkages and
relationships in terms of the dynamics of these variables across numerous
different scales. Such an understanding of biological causality can present
the need for sophisticated analytic tools. Describing this need, Ottoline
Leyser asserts:

There’s a feeling that development in general, and certainly plant devel-
opment, has got to the point at which it needs rigorous computational
models to allow us to understand the regulatory networks that underlie
development.1 Once you’ve got a sufficient understanding of the compo-
nents in a system, and know that there is a lot of feedback regulation, it
becomes incredibly difficult to make sensible predictive experimental plans
without a computational model . . . [something that] stimulates integration
of computational approaches and wet experiments. . . . There are lots of very
good examples of computational modeling providing insights that would’ve
been hard to get from the sort of classical, “back-of-an-envelope” approach
that people used before.2 (Amsen 2011, 4816)

Holistic, Mechanistic, Agnostic, or None of the Above?

It has been purported that one of the distinctive features of systems biology
is its explicitly holistic character, that it even represents a paradigm shift
in thinking in this regard (Laszlo 1972). However, one must immediately
note that there are different strands of systems biology that are more or
less amenable to holistic assumptions about biological causality, and in
different senses of the word holistic. In any case, as commentators have
observed (e.g., Gatherer 2010, 10; Fang and Casadevall 2011, 1401), one
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of the difficulties with calling systems biology holistic, or saying that it
is nonreductive, even antireductive, is that no single definition of holism
or reductionism (nor of systems biology, for that matter) exists. And, as
has been commonly observed, holism and methodological reductionism,
that is, the reductionism of the laboratory required for standardization and
measurement, have long coexisted by necessity (Gatherer 2010).

If one is interested in casting systems biology in terms of the holis-
tic/mechanistic dichotomy, all of these terms need to be nuanced with
finer discriminations. One needs to inquire as to what kinds of systems
biology there are. And, for that matter, what kinds of holism (if any) we are
dealing with in each case. Moreover, we must examine the ways in which
the frameworks used across systems biology force us to rethink the simplis-
tic reductive folk views of biological causality that remain all too prevalent
in the public space. All too often, these forms of discourse assume the
existence of very clear-cut and direct lines between clearly identifiable bio-
logical components and expressed traits. Whatever kinds of holism systems
biology might embody, its emphasis on the interactions between innumer-
able parts of biological systems problematize such clear-cut, monocausal,
monodirectional, and direct-causative assumptions about how biological
systems relate to expressed human traits and behaviors.

One sense in which systems biology might be seen as supportive to those
favoring a more broadly holistic view on biological causation comes in its
power to take account of, model or correlate, then empirically test, potential
emergent phenomena within biological systems. By emergence, I refer
to the self-organizing properties of biological systems, the emergence of
larger scale phenomena whose synergistic operations cannot be adequately
described solely in terms of the parts of that system. As Leyser puts it:
“[I am] less interested in descriptive studies of the functions of individual
genes, and more interested in analytical studies of regulatory processes that
explain the emergence of higher order properties in a developmental system.
That’s the key issue: to understand such genotype-phenotype connectivity”
(Amsen 2011, 4817 [emphases added]).

Holism then, taken in its broadest possible form, as that which sees
biological wholes as bigger than the sum of their parts, arguably finds its
clearest concrete analogue, viz. systems biology, with respect to emergence.
This is because biological systems, so understood, cannot be simply de-
scribed as aggregates of their basic components, as it were, but rather as
dynamically interacting with the larger wholes that emerge out of those
components. Even then, different forms of systems biology go on to sim-
ply treat emergent properties as just another component needing to be
modeled as part of the system in question.

It is notable that focusing on systems and networks has given rise
to new methods and experimental approaches. The so-called top-down
omics methodologies, which generate huge lists of data attempting to
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enumerate the components of biological systems (what might be described
as a cataloging approach) is the dominating approach within systems bi-
ology. This might be thought of as a form of biological cartography, a
process of mapping out, in incredible detail, the components and relations
of, say, the genome, or epigenome (more on this later). Another distinctive
set of approaches within systems biology is represented in the so-called
bottom-up approaches, which attempt to derive computational models of
biological systems in order to make predictions and hypotheses that can
be empirically tested. This combination of techniques, data collection (via
omics analysis), and the understanding of dynamics and mechanisms (via
modeling), combines to produce accounts of systemic behavior in response
to perturbation, all of which can then be experimentally tested (Mesarovic,
Sreenath, and Keene 2004, 19).

Certainly, many of the limitations of methodological reductionism can
be overcome by using systems biological approaches. Because systems bi-
ology often deals with computational data analytics, researchers are able to
assay huge quantities of biological elements, and so make much more finely
grained hypotheses regarding the effects of any given factor, or factors, in its
respective system over time. This is often done through what is called black
boxing, that is, correlating the patterns between changes in inputs and out-
puts of complex biological systems with respect to a given perturbation—in
short, making some manner of change to a system and just seeing what
happens. This allows one to get a sense of the correlations between specific
causes and overall systemic effects, though without necessarily producing
any understanding of the convoluted mechanisms governing how the one
led to the other (hence the name black boxing—one only looks at the in-
puts and outputs, and brackets out questions regarding why it is exactly
that such causes lead to such effects). In any case, such methods are made
much easier with newer data-analytic powers. Computational power used
to generate simulations of huge quantities of interacting factors has opened
up the empirical biological space for gathering, integrating, and exploring
quantities of biological data in ways previously impossible.

Given the diversity of approaches (from cataloging and black boxing,
to the attempt to model systems in order to gain a more profound under-
standing of the key dynamics of biological systems across various scales), it
is quite hard to map systems biology onto the notions of holism or mech-
anism in any comprehensive or neat way. Given the variety of techniques,
uses, and possibilities with this broad term systems biology (not to mention
the diversity of positions within the umbrella terms holism and mechanism),
how much sense does it really make to say that systems biology is holistic,
or that it is mechanistic? Perhaps it might be better to say that its different
strands are able to support elements of both kinds of outlooks. If that is
the case, then the lenses of holism, mechanism, or reductionism might not
be the best ways of approaching systems biology, nor of clarifying what
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is distinctive about it to begin with. Such lenses might represent, as Tim
Gwinn observes, a case of “arguing between two putatively contrary ill-
defined concepts (holism and reductionism), . . . in relation to how those
concepts apply to a third ill-defined concept (systems biology)” (Gwinn
2010). Certainly, forms of systems biology that rely on cataloging look very
much like a mechanistic analysis of parts, though other kinds of systems
biology that are more sensitive to multiscale dynamics are more or less
open to holistic outlooks. In any case, nothing here is really clear cut as far
as the terms holism, reductionism, and mechanism go.

Indeed, it might be argued that systems biology, depending on the par-
ticular approaches used, and (perhaps most importantly) the mindset of the
researchers themselves, proffers opportunities both for holists and mecha-
nists of all kinds to explore their convictions. And, if systems biology turns
out to be de facto holistic or mechanistic in its actual concrete application
this might be more of a reflection of current attitudes prevalent in bio-
logical research circles (and society generally), and less about the nature of
systems biology itself. Moreover, it must be noted that the broadly ideo-
logical and metaphysical machinery given in both holistic and mechanistic
worldviews (e.g., Gaia theory), are just as empirically impenetrable as they
ever were, and can be neither supported nor confuted by systems biological
approaches.

Integration and Convergence

The modular nature of computational forms of biology invites and wel-
comes the integration of data sets and methodologies from numerous
other domains. The common tongue of computational analysis, and the
software engineering undergirding it, serves as a Rosetta stone between
these disciplines, and has already yielded an immense quantity of mul-
tiscientific conversation. Systems biology is very much a part of a larger
project of what has been called advanced integrative scientific convergence
(AISC; Giordano, Kulkarni, and Farwell 2014, 74). Here, systems biology
might be understood, in part, as a component within a larger system of
interacting scientific modules including engineering, network thinking,
synthetic biology, computer science, information theory, systems analysis,
DNA computing, and cryptography, as well as numerous other domains,
too many to be listed, any of which might be usefully combined with other
domains in order to generate real-world, practical advances. It is important
that one understand systems biology (and predictive neuroscience) as being
components within a larger trend, a larger convergence project, in order
to understand the argument that will be presented here later on. Systems
biology is not a thing in itself, as it were, to be understood in isolation, or
as if from nowhere, but rather a component in a much larger data-driven
movement and draws no small significance therefrom.
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Yet, computation does not just drive external convergence between
quantitative-driven data. Biology is a very broad discipline composed of
numerous subdisciplines, and the computational aspect of systems biology
has shown a remarkable power for uniting subdomains, and motivating the
creation of huge data sets from across many of biology’s internally divergent
subdisciplines. Increasing integration is always welcomed (Pecina-Slaus and
Pecina 2015, 2).3 This gives rise to metadisciplines devoted entirely to the
prospect of further integrating and making sense of all these data sets
and information (e.g., bioinformatics, the process of applying computa-
tional software to biological data for making clear any potential practical
fruit that might be derived from various recombinations of the data). Nu-
merous strategies for such integration exist.4 So, systems biology can be
understood as both expressing a self-integration within biology (call it en-
doconvergence), as well as being a part of the external de-siloing of the
scientific disciplines for translational purposes too.

Computer Modeling and Mathematical Biology

All this collection, aggregation and integration produce a tremendous
quantity of data. To analyze all this, systems biology makes use of, and
has further facilitated, mathematical and computational biology. The Na-
tional Institutes of Health (NIH) defines computational biology as the use
of “mathematical and computational approaches to address theoretical and
experimental questions in biology . . . the development and application of
data-analytical and theoretical methods, mathematical modeling and com-
putational simulation techniques to the study of biological, behavioral,
and social systems” (Huerta et al. 2000). We will comment later on the
much-too-causal way that biological, behavioral, and social domains are
simply thrown together here.

The omics approach mentioned above is composed, similarly, of this
production of ever-increasing data sets cataloging the parts of systems.
Herein, any biological system involving complex and interacting elements
can be cataloged and listed in order to provide inordinately detailed de-
scriptions of the components thereof. A familiar example is the study of
the genome. Listing the elements of the genome gives us genomics. And
anywhere there is an ome an omics can likewise be created. Study of the
epigenome leads to a catalog qua epigenomics, and there are simply too
many omics analysis procedures to feasibly describe here (to name but a few:
connectomics, embryomics, pharmacogenomics, phenomics, proteomics,
transcriptomics—the list goes on, and is ever expanding).

In this so-called molecular to modular movement, that is the movement
from molecular biology toward more modular thinking, the metaphor
of modularity can serve as an interpretive key for understanding the
overarching process of convergence. Modularity is, after all, a central
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feature of the programming development in computer science. To illus-
trate, the very process of creating complex software, and the organization
of software-creation teams in general, are all modular processes from the
outset, wherein each module needs to be coded separately by different
teams of programmers for later integration. These modules are coordi-
nated and assembled using standardized basic language allowing the vari-
ous components to be variously integrated with ease at a later time. The
embracing vision of AISC might very well be described in such terms.
This subsuming of huge swathes of biological data into modular format,
the creation of a common structure into which empirical data sets can
then be variously recombined, is the substructure of computational biol-
ogy too. And, at the macrolevel, one of the chief challenges of big data
aggregation is the general or universal platforms through which as many
different kinds of data can be feasibly integrated and made conversant as
possible.

What one has here, then, is the attempt to generate a universal, or
semiuniversal, coding fabric, a universal scientific foundation and language
upon which the quantitative outputs of numerous sciences can be efficiently
plugged into each other, quite literally in some cases, so these fruits can
be used to build upon each other. Just as synthetic biology breaks down
DNA into bioblocks that can be recombined with the greatest of ease, we
have a movement by the sciences toward the creation of a common set of
quantitative building blocks that can then be used to produce numerous
cross-disciplinary technological advances, insights, and outputs. Systems
biology, as one component in this larger series of building blocks for use
in the overall scientific-integrative project, is thus part of what might be
called a computational federalization of the sciences. Whether one regards
systems biology merely as a fad, or as a radical paradigm shift in thinking,
one needs to step back in either case and observe the larger schema of
which it is a part.

Prediction and Intervention

Computational biomodeling aims to create simulations of biological sys-
tems in order to make predictions of how they will react under different
changes to the environments. Such predictions facilitate interventions.
Moreover, the interest is translational—that is, concerned with the trans-
lation of the discoveries made in scientific domains and their being used
to devise outcomes, potential treatments, interventions, clinical trials, and
real-world practical fruit of all kinds (Huser and Cimino 2012, 400). As
Kitano asserts, “computational systems biology addresses questions funda-
mental to our understanding of life, yet progress here will lead to practical
innovations in medicine, drug discovery and engineering . . . through
pragmatic modeling and theoretical exploration” (Kitano 2002).
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The potential for practical fruit, given the broad range of potential
disciplines to be integrated in this way, is great. One sees attempts to
use systems biology in order to prosper the work of the environmental
sciences (e.g., food and crops), health and nutrition, and advancement
of the medical sciences generally. Agriculturally, systems approaches have
provided huge amounts of data about plants (Kumar et al. 2015, 581),
and promise to help understand traits linked to agricultural productivity,
biotic and abiotic stress resistance, photosynthesis efficiency, and nutrient
mobilization. As Anil Kumar et al. note, such developments “have made
it possible to design smart crops with superior agronomic traits through
genetic manipulation of key candidate genes” (Kumar et al. 2015, 581).

Medical science projects—from genomics for understanding the archi-
tecture of everything from inflammatory bowel disease to Alzheimer’s (Platt,
Thiel, and Kurths 2016), to understanding infectious diseases, cell dynam-
ics, cancers, the brain, so-called P4 medicine (predictive, preventive, per-
sonalized, and participatory), and proteomics—have been thus advanced.
Everything from modeling the spread of infectious diseases (and model-
ing how to most effectively close schools in order to mitigate influenza
spreading), epidemics and pandemics (Fumanelli et al. 2016), to mapping
how diseases in the body are created and how they develop, modeling
cardiovascular pathology (Grebogi and Booth 2016), is being undertaken.
The potential arises for predicting, preventing, and diminishing a huge
range of human illnesses (Institute for Systems Biology 2016). For exam-
ple, promises are made of “dissecting cancer through mathematics” (Byrne
2010, 221) in the search for “circulating biomarkers for detection and
treatment personalization” (Friboes et al. 2015, 163).

PREDICTIVE NEUROSCIENCE

If you are a neuroscientist, a central premise is that it is not possible to
understand behavior, including human behavior, and even abnormal human
behavior, without biology. But at the same time, another central premise
must be that you’re not going to understand behavior if you think that
biology will explain everything. (Sapolsky 2013, 10)

Sibling to Systems Biology

The use of analytics to form predictions of human behavior is big busi-
ness. Between the years 2006 and 2010, IBM spent $11 billion researching
crime prediction analytics, and its products are used by police forces in
the United Kingdom and the United States to predict crime and future
recidivism (Thompson 2010). Insofar as any given analytics draw primar-
ily upon neuro-related information derived from neuroscience and related
fields, we have what might be called predictive neuroscience. This is related
to, but certainly not the same as systems biology. Yet, in all the four features
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outlined above (holistic-mechanistic ambiguity, integration, computation,
translation), predictive neuroscience overlaps considerably with systems
biology. Again, this is because both domains are subject to the superven-
ing convergence project and its data-driven reliance on computation and
modeling. Like systems biology, predictive neuroscience is fervently multi-
scientific and integrative. And, much like systems biology, there is a heavy
emphasis on analytics and use of various statistical methodologies. The
center of such research is translational; computational neuroscience is seen as
a “crucially important discipline for furthering our understanding of brain
function and translating this knowledge into technological applications”
(BU [Boston University] Neuroscience 2016). The interest in advancing
medical science, viz. prediction and prevention, is a central motivator here.

Brain research has moved beyond psychology, psychiatry, and neurology
and merged with other disciplines—statistical analysis, information tech-
nology, engineering, and many more. Advances in neuroimaging, along-
side cloud computing and big data analytics, have created major changes in
brain research (Le 2014). As with systems biology, the colossal quantities
of data produced require computational analysis. James Giordano, Anvita
Kulkarni, and James Farwell write:

The volume and complexity of differing modes, types, and levels of data
to be processed and analyzed within the AISC paradigm necessitates com-
putation technology to optimize the validity, reliability and utility of these
approaches. These methods can facilitate the comparative, analytic, predic-
tive, and normative value of multidisciplinary data sets that can be employed
in forms of neuropsychiatric intelligence acquisition, gathering, and analysis
(i.e., what has been termed “NEURINT”). (Giordano et al. 2014, 74–76)

The results of the given quantitative outputs are then represented
schematically, or in terms of nodograms, series of connected nodes “with
each node assuming a relative value of probabilistic weighting based upon
relative types, extents, and validity of data obtained,” all connected by
various lines which “represent dedicated applications of integrative collab-
oration” (Giordano et al. 2014, 75).

The intrinsically probabilistic dimension of such predictive analyses is an
important implication of the nonlinear relationships that exist between the
various factors in the systems being investigated. Unlike cruder reductive
approaches that have too often characterized biological causality in terms
of neat, direct, and, above all, deterministic causal relationships between
biological structures and their expressed characteristics, predictive neuro-
science is necessarily probabilistic because it understands that the causal
relationships between elements in a given system are all simultaneously
affecting one another.

Nonlinearity forces such researchers to admit a degree of inherent uncer-
tainty about the operations of the systems they are investigating. Again, this
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is tremendously significant given that such systems approaches are lauded
as being capable of predicting, and thus preemptively treating, individuals
thought to be likely to develop social problems in the future. The wish
to prevent social ills necessarily relies on unavoidably probabilistic data
in making predictions about harms, and judgments about persons’ future
behavior, before any such potential harms have been carried out.

In predictive neuroscience, the nodograms and schemas applied artic-
ulate the relationships between many concerns, including behavioral and
social dynamics, brain function, imaging, chemical biomarkers, anatomy,
genetics, and genomics. What is in play here is very much the schematic
kind of approach one finds in the omics version of systems biology, as
well as the basic underlying assumptions that complex behaviors cannot
be adequately described in linear A → B → C causal relationships, or in
the hard reductive brain spot for thinking. If there are any predictions to
be made at all, the assumption is that more and more information, and
from as many different scales and sources as possible, needs to be assayed,
integrated, and assessed. And so a surge for amassing as much data, from
as many sources as possible, arises.

Imaging, Genomics, and Cloud Computing

The heart of predictive neuroscience is the manner in which it integrates
data about the interactions among the following:

(1) the function and structure of the brain; mapped against
(2) genomic information about predispositions; and in relation to
(3) behavioral context, aggregated in cloud-based analytics by drawing

on various streams of demographic information (Giordano et al.
2014, 73); compiled into catalogs represented as

(4) big data, analyzed through increasingly advanced data mining
methodologies.

Predictive neuroscience begins with imaging. An entire alphabet soup
of neuroimaging techniques exists, each with its respective strengths and
limitations. In combination they can be used to yield views of both the
structure of the brain (its architecture and physiology), as well as its function
(the activity, blood and/or electrical, involved in that structure over time).
Such laboratory-based imaging certainly has its uses, and in various med-
ical contexts imaging devices can provide information that is immensely
valuable (e.g., detecting blood clots in those that have suffered a stroke).
However, when it comes to more contextual, socially embedded behavior,
laboratory-based imaging information can be misleading (Wiseman 2016).
Indeed, the brain changes depending on where it is: “context matters” (Le
2014). But as means for empirical testing outside the laboratory become
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more reliable, new modes of social neuroscience and medical analysis of the
brain in action have come to realize the value and importance of looking
at complex neurological problems in situ, in the context in which actual
problems occur.

Development is also a crucial factor in systems approaches, since it is
regulatory processes that are of particular interest. By extension, predic-
tive neuroscience must also contend with the manner in which the brain
changes over the lifespan. And it is here that the convergence of scientific
disciplines, and the need to view the brain as a system that exists within
other systems, arises (or, as David Depew put it, as an ecosystem that is
itself made up of various ecosystems). A systemic understanding of neural
operations and their relationships with factors at other scales is absolutely
required. As such, it will rarely do to simply think one can point to a given
structure of the brain and say one has located the reference point of specific
behavioral outcomes. As soon as one grasps the complexities of the inter-
actions between the brain’s interacting parts (itself increasingly viewed as
a nonlinear system of modules whose operations occur primarily through
communicative feedback loops), its genetic and epigenetic expression, and
the developmental and environmental systems in which a given person’s
brain is but one moving part, it becomes clear that such neuroreductive
explanations are highly impoverished, and require a broader multilevel
framework if they are to be understood at all.

Given this need for a systemic and multiscale view, genomic analysis is
taken as a complement to imaging analysis. If brain structure and function
give the menu for brain expression, so to speak, then, according to
Giordano, genomics gives us the ingredients. Herein, neurogenetic
approaches “may help improve probabilistic prediction by providing
information about hereditary and population patterns of neural structure
and function that contribute to neuropsychological states” (Giordano
et al. 2014, 78–79). Such a combination of data is welcomed, just as
with systems biology generally, because of the limitations of any one given
information stream. It is simply assumed (without sufficient explanation)
that the more information one can integrate, despite the very different
nature of all these data sources, the more likely one is to get an accurate
picture. Giordano writes:

Shortcomings can be delimited and compensated by the use of co-registered,
combinatory neuroimaging techniques, and the conjoinment of other bi-
ological approaches, such as neurogenetics, neuroproteomics (e.g., phylo-
genetic and cladistics analyses), and biomarker assays . . . . When coupled
to large-scale arrays of individual and group/populational databases, such
convergent scientific methods enact rapid (if not real-time) accessibility of
information that may allow formulation of comparative and normative in-
dices and may provide considerable diagnostic potential. (Giordano 2012,
54)
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In short, when it comes to data, the more the merrier is the rule. It re-
mains to be asked whether combining all such data sources, given their
wildly different natures, their differential levels of fidelity, and their vari-
able susceptibility for data error in collection, is more likely to lead to
a Chinese-whispers type of aggregation than to form a more accurate
picture—because both accuracies and inaccuracies are multiplied through
data aggregation (this is part of the problem known as garbage in garbage
out). Attempting to translate and integrate too many different kinds of
data might therefore lessen our capacity to understand the behavior and
traits in question rather than increasing it. In which case, it may be that,
with such data convergence ideologies, actually more is less, and less is
more. In which case, the entire ideology of data convergence is severely
undermined. It may be that less data, but better data, might be much more
useful than simply throwing absolutely everything into the same analytic
pot. What is required is better understanding of a more limited scope of
crucial interactions in system dynamics rather than attempting to simply
quantify and integrate everything.

CONTRARY MESSAGES, AGENCY, AND DEPERSONALIZATION

An Increase in Agency—Medical and Social Interventions

Predictive neuroscience is currently applied for looking into various med-
ical, mental health, and social issues (and there is not always a clear line
between them). Be it dementia, or antisocial behavior, schizophrenia, or
alcoholism, medical and social problems alike are taken to be well within
the purview here.

One of the benefits of predictive neuroscience is that it has no place for
the crude, nothing buttery frameworks that proliferate in the public space
(e.g., we are nothing but a bunch of neurons, we are nothing but the activities
of genes, and so on). It is not going to be acceptable, from a multiscale,
dynamic view, to just say aggression exists because of malfunctioning amygdala,
or psychopaths are the product of the MAOH gene mutation, or to say this
sadistic person lacks empathy because he was bathed in too much testosterone
in utero. One of the advantages of multiscale approaches is that they
provide a rigorous framework with which we can respond to proponents
of such hard reductionisms and instead encourage a more systemic or
dynamically interactional way of conceptualizing and responding to human
complexities.

The brain can no longer be understood just as an assemblage of parts
that are produced directly from a genetic blueprint, and whose functions
then merely play out according to its preset given structure. Nor is social
determinism acceptable either, for it is the interaction of scales that matters.
And this is precisely why we need a nonlinear systems approach that understands
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complex difficulties as neither monocasual, nor merely summative aggregates
of linear causes, but rather as synergistic systems of feedback and regulatory
processes.

As such, some form of systems thinking regarding biosocial interaction
does not just provide a better conceptual framework for describing how
profoundly interconnected the various features of our biology are with
the more human level of choice and agency. With the medical advances
that predictive neuroscience proffers, we can come to expect an increasing
preponderance of multiscale, biopsychosocial modes of medical interven-
tion too (qua P4 medicine). A biopsychosocial approach to medicine, that
is, seeing biology as one essential element of disease, but not the totality
thereof, represents an important shift in the way we think about medical
treatments. For one thing, the shift involves a greater emphasis on pre-
venting disease before it comes about. By understanding the relationships
between the expression of diseases (particularly genetically related diseases)
and their related environmental and biological factors, more responsibility
is placed on individuals to act in ways that can stave off illness before
it occurs. Testing for genetic predispositions and understanding environ-
mental triggers go together to form a broader treatment context in which
individual persons have to take a much more active role than with the
all-too prevalent attitude that one should get ill first, and then simply seek
out medication for ongoing treatment after the fact.

This rediscovery, the active role of persons in their own treatment and
health, has its dangers too, because once the patient is held accountable
for his or her lifestyle, a blame-game becomes possible wherein patients
become subject to normative critique for becoming ill (an example is the
recent denial of nonemergency surgery to the obese and to smokers by the
the UK’s National Health Service). On the one hand, it is unambiguously
good that persons regard themselves as having an active stake in their own
health, rather than thinking of themselves as passive receivers of treatments
from medical technicians. On the other hand, there is the need for this
participatory element not to be turned into the more sinister sense that all
illness might be the patients’ own fault, for which patients are to be held
accountable by medical practitioners and insurers alike.

A clear example of the shift toward more systemic and interactive think-
ing can be found in research into treating ailments like Alzheimer’s. Con-
trary to tabloid effusing about cures for Alzheimer’s that massively overstate
the power that developing medications proffer, the growing consensus is
that Alzheimer’s should no longer be understood as a matter of seeking out
some miracle cure, and one should not be hoping for some pharmaceuti-
cal or bioenhancement technology to solve the problem outright. Indeed,
uniscale, pharmaceutical approaches will always be inadequate for treating
problems like dementia because, as Steven Rose (2006) points out, aging
and our assessments of what counts as good memory for which age are
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socially relative and shifting judgments, as such, are (at least in part) so-
cially constructed phenomena anyway. Social remedies must be a part of
maladies that are likewise in part socially defined.

The rise of P4 medicine (predictive, preventive, personalized, and par-
ticipatory), embodies the need for dealing with problems, such as those
related to aging and memory loss, across numerous scales. Dementia is a
perfect exemplar of a medical condition that very much benefits from mul-
tilevel treatment protocols. As Rose suggests, the best suggestion is a use it or
lose it understanding for dementia prevention (Rose 2006, 170)—staying
active, good sleep, combined with dietary measures and social interactions.
Instead of seeking out the cause for dementia, as if one will be able to point
to one singular hobgoblin producing the malady, biopsychosocial interven-
tion and prevention help stave off the various processes of decline to begin
with, before any kinds of pharmaceutical approaches are even necessary.
It should be noted that this article was written during the media furor
regarding the testing of the new miracle drug for Alzheimer’s, solanezumab.
As of November 2016, the drug failed testing, showing no significant im-
provements regarding the rate of patients’ decline (The Guardian notes
that “between 2002 and 2012, 99.6% of drugs studies aimed at pre-
venting, curing or improving Alzheimer’s symptoms were either halted or
discontinued”; Devlin 2016). Despite such media claims, the general shift
is tending away from monocasual explanations and the magic bullet ap-
proach that it lends itself to and toward an attitude that attempts to deal
with complex problems, from the outset, along as many dimensions as
feasible.

When one is dealing with such complex ailments (as opposed to, say,
breaking a leg), monocausal thinking perpetuates a serious misapprehen-
sion of the nature of the difficulties themselves. It matters a great deal
whether one thinks of memory as something just to be treated by phar-
maceuticals or technologies, which are inherently patient-passive, or as
something to supplement the formation of broader good habits. More
than anything, it is the participatory element of such P4 medicine that is
significant here. The aim is to remove the idea of patients being merely
passive consumers of medicine toward generating the notion of patients
being active participants in their own disease prevention and recovery—
though preferably without falling toward the other extreme, making the
patient feel entirely responsible, and generating an unhelpful and excessive
culture of blaming patients for illnesses that might have simply beset them,
or disproportionately punishing persons for simply becoming ill.

As such, the dominating scientific rhetoric has social ramifications that
need to be considered. This is one reason why the underlying rhetoric
embedded within scientific paradigms needs to be made explicit. A public
that has been educated to understand that complex human problems need
multiscale approaches from the outset is less likely to think in terms of
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magic bullet approaches, and more likely to understand that medical and
social problems alike, from dementia to alcoholism, are all the sorts of
things they have an active personal stake in. Properly conveyed, such a
message might lend itself to an increase in agency and self-responsibility
across the various populations in which such science discourse is expressed.
In this way, the very language of multiscale biology has some potential to
be itself healing by implicitly conveying a more agency-enhancing social
message in medical context.

Depersonalization: Public Health Interventions and the Janusian
Quality of Predictive Neuroscience

Such frameworks can also proffer unhelpful messages. Predictive neuro-
science is clearly related to systems biology, but the major difference be-
tween predictive neuroscience and systems biology has to be the manner
in which it traverses both biological and nonbiological data. This is the
crucial observation that will concern the latter part of this article: the
overall integrative scientific paradigm that embraces both systems biology
and predictive neuroscience does not draw a qualitative distinction between
analyzing the elements of biological systems that contain no persons or agents,
and those systems that involve the interactions between persons, agents, with
other social agents, and their environments.

When one is exploring the systemic feedback relationships between,
say, the epigenomic components of corn when exposed to differing light
conditions, I would suggest that one is doing something of a radically
different order to the exploration of feedback systems between persons’ de-
mographic, genetic, and neural complements. Yet the quantitative method-
ologies share an underlying frame and approach that is identical (aggregate,
analyze, correlate, predict). Predictive neuroscience is interested in human
agents, and precisely as agents, whereas systems biology is more interested
in the interactions between nonpersonal biota more generally. This repre-
sents a crucial category difference between their objects of inquiry. Yet, the
overall integrative project, returning to the software team analogue drawn
earlier, functions by reducing everything to the level of modules, of the
same sort, whose analyses can be parceled out in a uniform manner, and
whose resulting data sets can be later recombined as if there is no important
difference between the objects of inquiry themselves. What we have then,
is the generation of a new kind of reductionism, wherein no distinction is
drawn at all between nonpersonal agents and human persons in the overall
integrative project.

It was noted above that both biological and nonbiological factors
are important for understanding human behavior. But predictive neu-
roscience, systems biology, and the larger AISC project are all overwhelm-
ingly quantitative—human behavior is treated as if it were just another
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biological component to be quantified. This is a point that needs to be
explored. It is all well and good observing that behavior cannot be under-
stood in purely biological terms, but when one treats the nonbiological
factors as if they are objects of the same order as biological data, just an-
other module to be combined with biological data modules, then a very
subtle but important confusion arises with profound implications. Given
that predictive neuroscience’s data traverse both the biotic and nonbiotic
domains, one needs to be concerned about the way in which such data are
integrated, and what means are available for qualitatively differentiating
between these two fundamentally different kinds of system—one which
involves human, personal agents, and the other that deals with biota qua
nonpersonal, nonagent interacting parts.

This difference takes on importance once one recognizes the trans-
lational and practically oriented intentions of those applying predictive
neuroscience. Such applications are being used to heal, but also to control
and deter activities at the social level. Just as neuroscientific assessment
and interventional neurotechnologies “are being increasingly regarded as
viable techniques and tools within psychiatric research and practice” (Gior-
dano 2012, 54), these same technical and assessment tools can be, and are
being, taken from their medical context and put to use in public pro-
tection, public health, and even for deterrence purposes and for national
security (Wurzman and Giordano 2011, T60). The inextricability of these
types of outputs produced by predictive neuroscience does need to be
acknowledged.

There are certain calls for predictive neuroscience to be used in such a
social capacity. Giordano writes, for example, that in the light of terrorism
and very visible mass killings, there has been a public call for neuroscience
and neurotech (neuroS/T) to be devised for purposes of public protection.
Or, at least, if it is not the public crying out for such intervention, those
within the neuroS/T domains (also in psychology and the social sciences),
are taking it upon themselves to think about how their studies might
be translated for tackling radicalism and mass public violence. NeuroS/T
is being called upon (and is in fact being used) to define, assess, and
potentially prevent wanton acts of aggression and violence (Wurzman and
Giordano 2011, T61; DiEullis and Cabayan 2013), and the neurobiology
of aggression is one particularly prominent example of this interest in
neuroS/T in helping form strategies for public intervention, paternalism,
and encouraging deterrence at home and abroad (Wurzman and Giordano
2011, T68; DiEullis and Cabayan 2013).5

Various ethical concerns over the use of such technologies arise, but
there is a more foundational problem—the dominance of computational
analytic methodologies over more humanistic empirical modes. There is
no question that a computational approach to analyzing human persons
can yield important fruit, but when it comes to dominate as a methodology
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over more humanistic forms of inquiry, the effect is deleterious. Human
persons need to be understood as qualitatively different to the sorts of beings
and interactions one is used to investigating as part of the larger systems
biology approaches. When there is no balance between the quantitative
or computational modes of analyzing persons, and a more qualitatively
sensitive, humanistic, person-centered mode, all sorts of problems and
ethical dangers arise, not least of which is the implicit message that one
is not being scientific unless one looks at human persons as if they are no
different, in effect, than molecules, proteins, and various other nonpersonal
biota in their environment. With that we have returned to something very
much like the old forms of reductionism we were hoping to have dispensed
with.

Then, one is left with an excessively schematic way of regarding human
persons. Such schematizing can be useful in its place, but the question
is one of balance, of leavening such approaches with more humanistic
approaches. Things are moving increasingly further into such imbalance,
creating a self-reinforcing mindset in which humanistic approaches become
less and less relevant, less respected, less well funded, pursued less in favor of
the overwhelming deluge of computational, quantitative, analytics-based
modes of describing the human person. The temptation to carry things
in this direction is inherent in the AISC framework itself. Quantifiable
data are more readily integrated, whereas more sensitive and humanistic
empirical approaches are less readily integrated. And when the trend is
toward integration, that which is less easily integrated gets sidelined. Such
computational methods, the standardization processes, are precisely what
are dominating (and overwhelmingly so) the scientific scene at present.

It is from here that the need for a double helical approach becomes
apparent. The point to be underlined over and over is that the problem
is not the use of computational methods per se (though problems do arise
because such methods are tempting and seductive with respect to what they
promise to provide). Rather, the problem is the current trend toward the
increasing dominance of quantitative work at the cost of more humanistic
scientific work. The assertion posed earlier was that systems biology should
be called multiscientific, rather than multidisciplinary (which is how it
describes itself ), and even a cursory look at the sorts of major funding
grants available (e.g., the White House’s current Brain Research through
Advancing Innovative Neurotechnologies [BRAIN] project), all of which
call for a multidisciplinary approach, make virtually no mention at all of
philosophy, politics, and (least of all) theology. The humanities are largely
excluded from most of these so-called multidisciplinary investigations.

But there is a more worrying and subtle aspect to this increasing emphasis
on schematic analyses. It is not just the humanities that are lacking, but
also the human-centered elements of the sciences themselves (particularly
the social and human sciences) that are being sidelined in favor of the more
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schematic-friendly elements of the various hard sciences. Human-centered,
person-facing, and qualitative aspects of, say, the psychological sciences,
because they are not readily reducible to schematic and computational
format, get downgraded in importance. So what we have is a narrowing of
the modes of scientific inquiry itself. What one has, in effect, is indeed a
multiscientific approach, but it is only the approaches within those sciences that
can be readily rendered in standardized, computational terms, that are favored
(and it is clear from the numerous complaints within the psychological
discipline that the research funding is going overwhelmingly toward the
measurement-based, purely quantitative, standardization-based kinds of
applications; Raven 2016). What one has, in effect, is a diminution of
scope within the human sciences themselves wherein the computational,
schematic-based elements are massively overprivileged. Again, it is the
domination of this mode at the cost of more humanistic perspectives that
is the problem, and the sense it gives rise to that one is not being scientific
unless one thinks about persons in purely numerical terms.

A double helical approach is very much needed right now—one which
restores not just the broader, richer work of the humanities, but which
restores the importance of qualitative work within the human sciences
themselves. The image of the double helix is very generative in helping
one understand the need for, and in describing the nature of, the kind
of integration of approaches that is required if one is to provide a rich
picture of human interaction. A double helical approach would be one in
which the two strands of investigation (computational and schematic ver-
sus qualitative and person-centered) are understood to be complementary
approaches that need each other, separate and opposing approaches that
are to be kept separate (McGilchrist 2009, 93), but wrapped intimately
around each other. Both are necessary in coding for the whole being.

CONCLUSION: QUANTIFICATION IN THE SERVICE OF THE

UNDERSTANDING, THE DOUBLE HELIX IN PRACTICE

In the Beth Israel Deaconess Medical Center, Boston, there is a diagnostic
computer used in the emergency rooms that analyzes colossal quantities of
data from across the general population—250,000 medical records gath-
ered over 30 years. The computer uses that data to form diagnoses for
patients brought into the hospital. It analyzes quantities of information
from so many streams that it would be utterly impossible for a physician to
look over them, reflect upon them, or even to notice such correlations at
all, let alone to draw diagnoses from such quantities of diverse, population-
wide data. The analytics software, in contrast, is capable of drawing novel
diagnoses on the basis of this mountain of information that no human
person could analyze.
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That being so, should this machine be given the final word on diag-
nosing the patients that it computes all these variables for? The computer
articulates that there are correlations, but it does not tell you why, what
these correlations mean, or what their wider significance might be. In order
to discern which relations are significant, the why of the relations in the
system, a more human element is required. The physician’s judgment is
required, for only the human professional can understand the situation of
the patient in its qualitative reality. And he or she does this face to face,
using quintessentially human discernment.

It should go without saying that problems are going to arise when
quality is neglected in the overriding pursuit of quantification data, when
quantity is literally taken over quality (as it overwhelmingly is in predictive
neuroscience and related domains). Indeed, the very criterion quantity over
quality might as well be part of the definition of predictive neuroscience,
and the entire project of AISC as a whole. The pejorative sense of this is
entirely warranted, and something that needs to be discussed.

Systems approaches rely on gathering immense quantities of data. But
the point of accumulating all this data must be to enhance our understand-
ing of the systems in question rather than simply producing inordinately de-
tailed cartographical descriptions of phenomena and their components. It
is possible to have too much data, and for the sheer quantity of data to con-
fute, rather than enhance, an understanding of a given system’s dynamics
and core relationships. Overemphasizing omics approaches, for example,
which tend to merely list the components of systems, rather than attempt-
ing to understand the core relationships within systems, is in Leyser’s words
“part of a desperate hope of learning something about systems by merely
cataloging parts without having to think about the relationships” (Leyser,
personal communication, October 15, 2016). Systems need more than
quantification, cataloging, and listing—they must be understood.

Such concerns are particularly relevant to predictive neuroscience, and
its various siblings, whose interests lie in predicting and intervening in the
lives of persons and groups. Meaningful interventions will have to hinge
on understanding why such correlations arise, and what they might mean.
When predictive neuroscience involves making statements about danger-
ous individuals, or, more pressingly, predictions about persons who might
become dangerous individuals given the shapes of their brains and genetic
predispositions, how much more crucial is it going to be to make sure that
one understands why such predictions come about, why regularities occur,
and what these regularities mean, or how far they extend through time and
across societies? For this a more discerning approach is required, one in
which not every single factor needs to be accounted for, but rather a human
sense of the important relations, to the exclusion of what is extraneous,
might be of greater benefit. Too much data, too much aggregation may
very well be, in the end, counterproductive.



535

Yet, what one finds in the Beth Israel Center case is an indication of
the appropriate harmony that needs to be struck between the need for
qualitative human understanding and quantitative methodologies—their
need to go hand in hand. Above all, one benefits by being constantly
reminded that the whole point of systems methodologies is to refine, and
contribute to, our understanding, to be at the service of understanding
those systems, rather than obfuscating that understanding through the
compilation of endless series of descriptions of the moving parts of the
system in question.

In their proper place, in the service of the understanding, quantitative
and computational systems approaches hold unfathomable positive poten-
tial for medical treatment and increasing social messages of responsibility
and agency. But when these systems approaches are applied to persons, par-
ticularly within the context of predictive neuroscience, all these benefits rely
on understanding humans as precisely human, as agents too, rather than as
a schematically representable series of cogs in a feedback system of elements
whose parts—genomic, neural, demographic, developmental—are merely
quality-less mechanical components to be homogenized, quantified, statis-
tically correlated, and computationally analyzed. Both approaches, quan-
titative and qualitative, computational and humanistic, are required for a
broad, rich vision of the human person and human interaction to be articu-
lated. The two approaches are complementary, and need to be understood
as being so.

ACKNOWLEDGMENTS

The author would like to thank Templeton World Charity Foundation
for funding this article through the International Society of Science and
Religion’s grant “The New Biology: Implications for Philosophy, Theology,
and Education.”

NOTES

1. This emphasis on understanding relationships is important. Leyser (Amsen 2011) argues
that the purely bioinformatic kinds of systems biology, and the omics approaches which simply
rely upon correlating massive amounts of data, constitute approaches that very much fail to
understand the relationships in biological systems. Instead, they constitute a sort of black boxing
wherein the only thing that really matters is not so much understanding the system but merely
being able to correlate inputs and outputs in biological systems. Such a process involves simply
describing what happens to a system when one makes a given change. But one does not understand
why such a change happens until one takes a more integrative look at the linkages and the key
dynamics between the variables in a multiscale manner.

2. It should be noted that, although systems biology uses computational modeling, not all
such modeling is systems biology.

3. Because individual omics data have been seen to create false negatives and false positives,
and because single annotations are generally not adequate for describing the function of biological
elements (Ge, Walhout, and Vidal 2003, 551), more and more integration of data sets is seen as
being desirable.
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4. For example, with “collective mining” and nonnegative matrix factorization–based ap-
proaches as integration methodology (Devarajan 2008, 1), or with advanced network analysis
for providing multiplexed and functionally connected biomarkers (Bebek et al. 2012, 446). For a
nontechnical overview of how different scales of experimental research can be combined with the
appropriate computational modeling techniques, see Meier-Schellersheim, Martin, and Rederick
(2009, 4).

5. See Wurzman and Giordano (2011) and Rose (2006) for an extremely disturbing catalog
of ways in which neurotech and neuroscience have already been, and are being, researched to be
used for purposes of national security and protection, predicting and doing harm to potential
aggressors against the state.

REFERENCES

Amsen, Eva. 2011. “An Interview with Ottoline Leyser.” Development 138:4815–17.
Bebek, Gurkan, Mehmet Koyuturk, Nathan Price, and Mark Chance. 2012. “Network Biology

Methods: Integrating Biological Data for Translational Science.” Briefings in Bioinformat-
ics 13:446–59.

BU [Boston University] Neuroscience. 2016. “Computational Neuroscience.” Available at
www.bu.edu/neuro/graduate/computational-neuroscience

Byrne, Helen M. 2010. “Dissecting Cancer through Mathematics: From the Cell to the Animal
Model.” Nature Reviews Cancer 10:221–30.

Devarajan, Karthik. 2008. “Nonnegative Matrix Factorization: An Analytical and Interpretive
Tool in Computational Biology.” PLos Computational Biology 4:e1000029.

Devlin, Hannah. 2016. “Dismay as Alzheimer’s Drug Fails in Clinical Tri-
als.” The Guardian, 23 November. Available at https://www.theguardian.com/
society/2016/nov/23/dismay-as-alzheimers-drug-solanezumab-fails-in-clinical-trials

DiEullis, Diane, and Hriar Cabayan 2013. Topics in the Neurobiology of Aggression: Impli-
cations to Deterrence. Strategic Multi-Layer (SMA) Periodic Publication. Available at
http://nsiteam.com/neurobiology-of-aggression-implications-to-deterrence/

Fang, Ferric, and Arturo Casadevall. 2011. “Reductionistic and Holistic Science.” Infection and
Immunity 79:1401–04.

Friboes, Hermann, Louis T Curtis, Wu Min, Kani Kian, and Mallich Parag. 2015. “Simulation
of the Protein-Shedding Kinetics of a Fully Vascularized Tumor.” Cancer Informatics
14:163–75.

Fumanelli, Laura, Marco Ajelli, Stefano Merler, Neil Ferguson, and Simon Cauchemez. 2016.
“Model-Based Comprehensive Analysis of School Closure Policies for Mitigating In-
fluenza Epidemics and Pandemics.” PLoS Computational Biology 12:e1004681.

Gatherer, Derek. 2010. “So What Do We Really Mean when We Say that Systems Biology Is
Holistic?” British Medical Council Systems Biology 4:1–12.

Ge, Hui, Albertha Walhout, and Marc Vidal. 2003. “Integrating ‘Omic’ Information: A Bridge
between Genomics and Systems Biology.” Trends in Genetics 19:551–60.

Giordano, James. 2012. “Neuroimaging in Psychiatry: Approaching the Puzzle as a Piece of the
Bigger Picture(s).” American Journal of Bioethics Neuroscience 3:54–55.

Giordano, James, Anvita Kulkarni, and James Farwell. 2014. “Deliver Us from Evil? The Temp-
tation, Realities, and Neuroethico-Legal Issues of Employing Assessment Neurotechnolo-
gies in Public Safety Initiatives.” Theoretical Medicine and Bioethics 35:73–89.

Grebogi, Celso, and Nuala Booth. 2016. “Nonlinear Dynamics in Flow Abnormal-
ities Related to Cardiovascular Pathology.” Available at http://www.abdn.ac.uk/
systemsbiology/research/blood

Gwinn, Tim. 2010. “Systems Biology, Holism and Reductionism.” Available at http://
panmere.com/?p=105

Huerta, Michael, Florence Haseltine, Yuan Liu, Gregory Downing, and Belinda Seto. 2000.
“NIH Working Definition of Bioinformatics and Computational Biology.” Available at
file:///C:/Users/Harris%20Wiseman/AppData/Local/Microsoft/Windows/INetCache/
IE/EW6CWVYN/workingdef.pdf

Huser, Vojtech, and James J. Cimino. 2012. “Precision and Negative Predictive Value of Links
between ClinicalTrials.gov and PubMed.” 2012 American Medical Informatics Association



537

Annual Symposium Proceedings 400–08. Available at https://knowledge.amia.org/amia-
55142-a2012a-1.636547?qr=1

Ideker, Trey, Timothy Galitski, and Leroy Hood. 2001. “A New Approach to Decoding Life:
Systems Biology.” Annual Review of Genomics and Human Genetics 2:343–72.

Institute for Systems Biology. 2016. “Proteomics.” Available at www.systemsbiology.org/
research/proteomics/

Kitano, Hiroaki. 2002. “Computational Systems Biology.” Nature 420:206–10.
Kumar, Anil, Rajesh Pathak, Sanjay Gupta, Vikram Gaur, and Dinesh Pandey. 2015. “Systems

Biology for Smart Crops and Agricultural Innovation: Filling the Gaps between Genotype
and Phenotype for Complex Traits Linked with Robust Agricultural Productivity and
Sustainability.” OMICS: A Journal of Integrative Biology 19:581–601.

Laszlo, Ervin. 1972. Introduction to Systems Philosophy: Toward a New Paradigm of Contemporary
Thought. New York, NY: Gordon and Breach.

Le, Tan. 2014. “Behavior and Brain Health.” TEDxBrussels. Available at
http://tedxtalks.ted.com/video/Behavior-Brain-Health-Tan-Le-a;Belgium

McGilchrist, Iain. 2009. The Master and His Emissary: The Divided Brain and the Making of the
Western World. New Haven, CT: Yale University Press.

Meier-Schellersheim, Fraser Iain Martin, and Klauschen Rederick. 2009. “Multiscale Modeling
for Biologists.” WIREs Systems Biology and Medicone 1:4–14.

Mesarovic, Mihajlo, Srees Sreenath, and Jack Keene. 2004. “Search for Organizing Principles:
Understanding in Systems Biology.” Systems Biology 1:19–27.

Nature. 2016. “Systems Biology.” Available at nature.com/subjects/systems-biology
Pecina-Slaus, Nives, and Marko Pecina. 2015. “Only One Health, and So Many Omics.” Cancer

Cell International 15:1–7.
Platt, Bettina, Marco Thiel, and Jergen Kurths. 2016. “Recognition of Early Stages of Alzheimer’s

Disease in EEG Recordings.” Available at www.abdn.ac.uk/systemsbiology/research/eeg
Raven, John. 2016. “Genome Common Sense?” The Psychologist 29:87.
Rose, Steven. 2006. The 21st-Century Brain: Explaining, Mending and Manipulating the Mind.

London, UK: Vintage Books.
Sapolsky, Robert. 2013. “Introduction to the Neurobiology of Aggression.” In Topics in

the Neurobiology of Aggression: Implications to Deterrence, edited by D. DiEullis
and H. Cabayan. Strategic Multi-Layer (SMA) Periodic Publication. Available at
file:///C:/Users/Harris%20Wiseman/AppData/Local/Microsoft/Windows/INetCache/
IE/1QRI2AXO/Sapolsky_2013.pdf

Thompson, Tony. 2010 “Crime Software May Help Police Predict Violent Offences.”
July 25. The Guardian. Available at http://www.theguardian.com/uk/2010/jul/
25/police-software-crime-prevention

Wiseman, Harris. 2016. The Myth of the Moral Brain: The Limits of Moral Enhancement. Cam-
bridge, MA: MIT Press.

Wurzman, Rachel, and James Giordano. 2011. “‘NEURINT’ and Neuroweapons: Neurotech-
nologies in National Intelligence and Defense.” Synesis: A Journal of Science, Technology,
Ethics and Policy 2:T55–T71.




